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Abstract

For two classic case studies in labor economics, it is shown how recently devel-

oped instrument-free methods yield remarkably narrow asymptotically valid confi-

dence intervals for regression coefficients. These methods achieve set-identification

through adopting credible ranges for the correlation between endogenous regres-

sors and model errors. They also provide more decisive evidence on (in)validity of

exclusion restrictions than Sargan-Hansen over-identification tests. The latter has

been shown to often not detect serious instrument invalidity, whereas instrumental

variables based inference (also identification robust variants) suffers severely even

from mild invalidity, especially for weak instruments.
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1 Introduction

With the purpose to investigate whether recently developed new instrument-free inference

techniques reinforce the credibility of the original results or provide new insights, we apply

them to data earlier used in two classic case studies in labor economics (Angrist and

Krueger, 1991; Card, 1995). To date, it is still current best practice to use instrumental
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variables based techniques for such analyses. We conclude from the results that, although

both approaches are not without particular downsides, the kind of credibility that can

be substantiated for findings obtained by the instrument-free approach are of a more

comprehensive and solid nature than those at hand when adopting instruments. Our

findings for these case studies raise doubts about the validity of the exclusion restrictions

and about the reliability of over-identification tests for the detection of such a violation.

Instrumental variables are variables which should be uncorrelated with the model error

term. Exogenous regressors establish valid internal instruments. For models with some

endogenous regressors as well, instrumental variables based inference requires at least as

many external instrumental variables as there are endogenous regressors. These external

instruments should validly be excluded from the regression model, implying that they are

uncorrelated with the model disturbance term. Instrumental variables based techniques,

already in use from early on in the 20th century, popular in particular in applied macroe-

conomics during some decades after the Second World War, gained firmer ground too in

applied microeconomics, especially during the last decade before the turn of the century.

These microeconometric studies stressed that the good reputation of causality studies,

when based on well-designed controlled experiments, could be matched by observational

data based studies too, provided these could be satisfactorily framed as so-called natural

experiments. This inspired a revival of applications using the two-stage least-squares

(TSLS) technique. However, these studies using instrumental variables did receive criti-

cism for various good reasons; see, for instance, Bound, Jaeger and Baker (1995), Staiger

and Stock (1997), and Rosenzweig and Wolpin (2000). Apart from potential invalidity

(correlation between instrument and error), another ominous vulnerability concerns the

possible weakness of external instruments. This occurs when the variation in endogenous

regressors shows only little coherence with variation in the external instruments. Stock et

al. (2002) argue that features that make it plausible for instruments to be exogenous can

also make the instruments weak. However, due to further technical and methodological

developments, TSLS and its generalization GMM (generalized method of moments) re-

mained prominent and broadly respected tools in modern applied econometric research.

Of the serious weaknesses, as collected in the overview by Murray (2006), various have

been addressed in the recent literature, see Andrews, Stock and Sun (2019).

These weaknesses of instrument-based analyses are in essence fourfold: (i) their stan-
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dard form of normal asymptotic inference is highly inaccurate when using weak though

valid external instruments (coefficient estimates are biased, they are non-normal in finite

samples, and their standard deviation estimates lead to very poor size control of tests);

(ii) although weak-instrument robust techniques improve the level control (provided the

instruments are valid), they do yield confidence sets which are as a rule very wide or even

unbounded; (iii) in the context of instrument-based inference, trustworthy statistical ev-

idence on (in)validity of instruments can only be produced, if at all, when a sufficient

number of genuinely valid instruments is already available, so statistical evidence cer-

tifying validity of all employed instruments is an impossibility; and (iv) self-evidently,

instrument-based inference will be seriously inaccurate if some instruments are in fact

invalid, and can even be worse than inconsistent OLS-based inference.1

Addressing the problems (i) and (ii) is still receiving a lot of attention in econometric

theory currently, but at the very best it will ultimately just yield appropriately size-

controlled though often very inefficient inference, which due to (iii) will always be built on

insecure orthogonality assumptions. So, due to (iii) and (iv), putting trust in instrument-

based inference will always be risky and often controversial.

The instrument-free approach illustrated here can provide some help to instrument-

based inference to overcome problem (iii), which then might be beneficial to avoid problem

(iv). More importantly, however, it enables to produce instrument-free inference on

the specified regression model as such, which is therefore immune to the problems (i)

through (iv) altogether. Needless to remark that this alternative approach goes with

some particular problems of its own, as will be exposed below.

Earlier studies addressing problem (iv) mostly held on to employing instrument-based

techniques. Kraay (2012) used Bayesian methods allowing for a certain degree of instru-

ment invalidity. Nevo and Rosen (2012) derive set estimates under assumptions on the

signs and relative magnitudes of the simultaneity and instrument invalidity. Conley et

al. (2012) augment the model with the external instruments and make assumptions on

their coefficients (which would be zero under correct exclusion). This allows frequentist

or Bayesian methods to obtain inference allowing for instrument invalidity. These three

approaches, though, are all still facing problems (i) and (ii), which can be circumvented

1For (i) see Nelson and Startz (1990), Stock et al. (2002); for (ii) see Andrews and Stock (2007); for
(iii) see Parente and Santos Silva (2012); and for (iv) see Kiviet and Niemczyk (2012).
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by the instrument-free approach. Because any particular separate approach will be built

on disjunct though unverifiable subjective assumptions, it seems wise for practitioners

to adopt an eclectic attitude, in which findings from various alternative approaches are

confronted with each other.

Inference on linear regression models with endogenous regressors, which does not

use external instruments, has been developed in Kiviet (2020a, 2020b). It is based on

bias-corrected least-squares estimation. As is well known, the least-squares estimator is

inconsistent when one or more regressors are correlated with the error term. Obtaining

nevertheless an assessment of this bias from this inconsistent estimator itself may at

first sight appear quite eccentric. Therefore, this instrument-free least-squares based

consistent estimator is addressed as kinky least-squares (KLS). It pursues identification

by making point or interval assumptions on the actual numerical value of the correlations

between the regressors and the error term. Set identification is achieved, as defined in

Bontemps and Magnac (2017), provided the specified intervals cover the true correlations.

It appears that the credibility one is willing to ascribe to either instrument-based or

instrument-free inference will be determined unavoidably by subjective assessments of

either the claimed validity of the instruments or the alleged reliability of the adopted

numerical range of values for the degree of endogeneity. Here, KLS seems to have a clear

advantage, because its assumed set of correlation values does not have measure zero, as

is the case for TSLS and GMM.

The KLS approach is related to alternative instrument-free identification strategies

that are used for sensitivity analysis. In the absence of reliable exclusion restrictions,

Altonji et al. (2005) obtain bounds on the estimates by making assumptions on the rela-

tive importance of selection on observables versus selection on unobservables. Effectively,

their approach is bounding the correlation between the error terms in the outcome and

the selection equation. Oster (2019) obtains a consistent set-identified estimator for bias-

adjusted treatment effects by imposing similar bounds on the relative degree of selection

on observables and unobservables, and by bounding the coefficient of determination that

could be hypothetically achieved if all unobserved control variables were included in the

regression. The underlying logic is similar to that of KLS, namely to achieve interval

identification by imposing bounds on some aspects of the relationship between observed

and unobserved model characteristics. Choosing these bounds requires additional prior
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knowledge or assumptions. Both Altonji et al. (2005) and Oster (2019), who just consider

models with one endogenous regressor, find it reasonable to assume that the relationship

between the endogenous regressor and the unobserved variables is not stronger than its re-

lationship with the observed control variables. However, in practice the resulting bounds

can easily become too wide for informative inference. KLS bounds leading to sufficiently

narrow confidence intervals might be easier to justify, or at least help to examine the

plausibility of the results obtained with alternative approaches, also because KLS un-

locks an extra layer of endogeneity-robust misspecification tests. Although destructive

for the specifications originating from the classic studies, KLS can and should be turned

into a constructive tool for discovering better models from extended data sets.

In Section 2, we first highlight some basics about the instrument-free approach. Next,

in Section 3, we compare the major hurdles affecting the approaches based on either

exploiting instrumental variables or avoiding the use of instruments. Their assessment,

against which our empirical findings will be judged, are obtained from a small scale sim-

ulation study. All its details are presented in Appendices A and B, separately available

as Supplementary material. Section 4 first analyzes crucial issues on the endogeneity and

instrumentation problems affecting the empirical analysis of models suffering from omit-

ted regressors, and of earnings equations in particular. Most studies leave these issues

implicit; we provide full technical details on them in Appendix C. Next, we contrast em-

pirical results from instrument-based and instrument-free approaches, namely standard

TSLS and KLS, and the approaches put forward by Conley et al. (2012) and by Oster

(2019). We do this for the two classic studies on the causal effect of education on earnings

by Angrist and Krueger (1991) and Card (1995). Finally, Section 5 concludes.

2 The essentials of KLS

Correction for finite-sample bias of regression coefficient estimators is usually only em-

ployed to consistent estimators; see, for instance, Kiviet and Phillips (1993) and MacKin-

non and Smith (1998). The bias/inconsistency of least squares in the present model is in

fact a function of the vector of correlations between the regressors and the error term, to

be indicated by ρxu below. Vector ρxu is generally unknown, and can only be estimated

consistently on the basis of consistent residuals, which would require a consistent estima-

tor of the coefficients. The latter can be obtained, of course, by exploiting valid external
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instruments, but this is a shaky source for achieving identification that KLS wants to

avoid. Therefore, it pursues point or set identification by adopting for each element of

ρxu either orthogonality of that regressor with respect to the error or an interval regarding

its possible nonorthogonality.

For a biased but consistent estimator, the order of magnitude of a consistent estima-

tor’s bias is of lower order in terms of the sample size than the estimator’s distribution.

In such cases, the leading term of the asymptotic variance of the bias-corrected estimator

is equivalent to that of the asymptotic variance of the uncorrected estimator. For an

inconsistent coefficient estimator, however, a consistent estimator of its bias is of such

an order that the leading terms of the asymptotic variance of the uncorrected and the

bias-corrected coefficient estimators will be different. Although obtaining an expression

for the consistent KLS estimator itself is quite straightforward, the derivation under the

usual regularity conditions of its asymptotic variance, which is required for testing and

confidence region construction, proved to be quite cumbersome. Simulation experiments

in Kiviet (2020a,b) demonstrate, though, that in general the obtained asymptotic approx-

imation to the actual distribution of the KLS estimator, unlike that of TSLS, is actually

extremely accurate, even in very small samples.

For clarification, we provide here some technical details on instrument-free inference.

We shall present formulas for the KLS estimator and its variance estimator for the single

coefficient β of a regression model for regressand y with just one endogenous regressor x

and disturbances u, where for the identically and independently distributed observations

i = 1, ..., n we have

ui ∼ (0, σ2
u), xi ∼ (0, σ2

x), with E(xiui) = ρxuσxσu. (1)

Applying ordinary least-squares (OLS) yields the estimators

β̂OLS = Σn
i=1xiyi/Σ

n
i=1x

2
i , ûi = yi − β̂OLSxi, and σ̂

2
u = n−1Σn

i=1û
2
i , (2)

which are inconsistent for β, ui, and σ
2
u when scalar ρxu ̸= 0. KLS, which for known ρxu

is consistent and asymptotically normally distributed, is in this simple context defined
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by the estimators

β̂KLS(ρxu) = β̂OLS − ρxu

√
σ̂2
u(ρxu)

n−1Σn
i=1x

2
i

, (3)

σ̂2
u(ρxu) = σ̂2

u/(1− ρ2xu), (4)

V̂ ar
(
β̂KLS(ρxu)

)
=

4 + (κ̂x + κ̂u − 14)ρ2xu − 2(κ̂u − 5)ρ4xu
4(1− ρ2xu)

2

σ̂2
u(ρxu)

Σn
i=1x

2
i

, (5)

where κ̂x and κ̂u are the kurtosis estimators

κ̂x =
n−1Σn

i=1x
4
i

(n−1Σn
i=1x

2
i )

2
, κ̂u =

n−1Σn
i=1(yi − β̂KLSxi)

4

[n−1Σn
i=1(yi − β̂KLSxi)2]2

.

So, the fourth moments of both x and u have an effect on the variance. If both happen

to have kurtosis 3 then the true variance specializes to the familiar expression σ2
u/Σ

n
i=1x

2
i ,

which is invariant regarding ρxu, and is consistently estimated by σ̂2
u(ρxu)/Σ

n
i=1x

2
i .

We conclude that, if ρxu were known indeed, producing inference on β in the form of

tests and confidence regions would be easy. Testing the hypothesis β = β0, where β0 is

a known constant, against a one- or two-sided alternative requires confronting the test

statistic

[β̂KLS(ρxu)− β0]/[V̂ ar
(
β̂KLS(ρxu)

)
]1/2 (6)

with a standard normal critical value, or its square with one from χ2(1). The endpoints

of an (1− α)× 100% asymptotic confidence interval for β are given by

β̂KLS(ρxu)± ζ1−α/2[V̂ ar
(
β̂KLS(ρxu)

)
]1/2, (7)

where ζp is the p
th quantile of the standard normal distribution. Such unfeasible (because

ρxu is generally unknown) KLS inference on β has proved to possess highly desirable prop-

erties, because β̂KLS(ρxu) is virtually unbiased in finite samples of typical cross-section

models. Moreover, its variance is as a rule smaller than that of instrumental variables

based estimators, especially when based on weak instruments. When instruments are

invalid, which renders TSLS inconsistent, consistent KLS is certainly much more attrac-

tive.

At first sight KLS seems unfeasible, because ρxu is generally unknown in practice.

However, KLS inference can be produced over a range of chosen realistic values rxu. This

7



is easily done in practice, but indicating which values are unreasonable, and which are

reasonable, requires subject matter knowledge not always available, and if available not

always trustworthy. This is comparable to the situation for instrument-based analysis,

where statements on the assumed validity of instruments may lack persuasiveness. A

crucial difference is, however, that it is not at all straightforward to investigate the sen-

sitivity of TSLS to a certain degree of invalidity of instruments, whereas for KLS the

sensitivity of inference on regression coefficients regarding ρxu is an intrinsic part of the

instrument-free approach, as will be exposed below. Similarly, in the framework of Al-

tonji et al. (2005) and Oster (2019), the sensitivity of the results can be assessed with

respect to a varying degree of proportionality regarding the selection on unobservables

relative to observables, while any particular choice for the proportionality parameter may

be hard to motivate. Importantly, any one of the approaches might be informative about

the plausibility of the assumptions required for one of the other approaches, thus making

them complements rather than substitutes.

When the model contains exogenous regressors too, or if the model has more than

one endogenous regressor, more general formulas than those given above apply, see Kiviet

(2020b). Also models with dependent time series observations can be handled. The more

general framework can also easily be used to test whether particular regressors seem

omitted from the model, which enables to test the exclusion restrictions which are so

crucial for an instrument-based analysis. KLS-based confidence sets for the coefficients of

excluded regressors can be used as input for the Conley et al. (2012) plausibly exogenous

techniques. Moreover, KLS easily allows to implement tests for misspecification, such

as for heteroskedasticity, structural change, serial correlation (just relevant in a time

series context) or RESET tests for improper functional form, all without having to adopt

instrumental variables.

3 The impediments of instrument-based and instrument-

free inference

We ran a small scale Monte Carlo study to develop some useful intuition regarding the

(lack of) qualities of TSLS and KLS under relevant circumstances. It is based on sim-

ulated though rather typical cross-section data for a single relationship with just one
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endogenous regressor and an intercept, for which two candidate external instruments are

available. Samples of size 50, 250 and 2500 have been analyzed. We focussed on non-

extreme cases, avoiding seriously weak or exceptionally invalid instruments. We com-

pared the median bias and interquartile range of TSLS and KLS estimators, examined

the sensitivity of TSLS regarding using invalid instruments, assessed the effectiveness of

over-identification testing for deciding on the (in)validity of instruments, and investigated

the effects on KLS of using (in)valid assumptions on the actual degree of endogeneity.

All details on these experiments can be found in Appendices A and B; see also Kiviet

and Kripfganz (2021). In this section we just report the major findings.

For standard linear models, the over-identification restrictions test is the Sargan (1958)

test. For its correspondences with testing exclusion restrictions, and its implicit adoption

of just-identifying restrictions, see Parente and Santos Silva (2012) and Kiviet (2017).

In the literature this test is often blamed for over-rejection in finite samples. Therefore,

some authors advise practitioners to use the test at a very low nominal significance level;

see Hansen (2022, Ch.12). On the other hand one could argue in favor of testing at a

very high nominal significance level, because an insignificant value of the test is used in

practice to accept the null hypothesis of validity of all instruments. So, the primary worry

being to fail to reject invalid instruments (commit type II errors) and not so much to limit

type I errors (wrongly rejecting valid instruments) one might decide to accept instrument

validity and the corresponding TSLS results only when the p-value of the Sargan test is

pretty high; perhaps only when it is larger than 50%, instead of the habitual 5%, or just

1% as Hansen (2022) suggests!

It is quite remarkable that despite the frequent use of TSLS (and its generalization

GMM) there is very little concrete information in the literature on the actual performance

of the (more or less mandatory) Sargan test (and its generalization the J-test) and the

consequences for inference on model coefficients of type II errors of these tests. For our

models based on i.i.d. observations we found that the Sargan test, when using both

instruments and testing the single over-identification restriction, has actual type I error

probabilities very close to the chosen nominal significance level α, for 0.05 ≤ α ≤ 0.5 (so

when both instruments are valid indeed). As expected, when one or both instruments

are invalid, the rejection frequency not only increases with α, but with the sample size

too. However, the rejection frequency is barely larger than α for particular combinations
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of invalidity and strength of the instruments, even when the sample size is really large,

especially when the more invalid instrument is relatively strong. Nevertheless, using

α = 0.05 may result in a rejection probability above 0.8 for particular other correlation

combinations when at least one of the instruments is invalid, especially when there is

one valid and relatively strong instrument. Though, scrutinizing the detailed results in

Appendix A, one should realize that the Sargan test is not a trustful guide. In Appendix B

we show that in certain cases of serious instrument invalidity, where the two instruments

have a similar ratio between their correlations regarding degree of invalidity and strength,

the rejection probability of the Sargan test will always be close to the chosen significance

level and thus seriously lacks power.

Of course we find that OLS is unbiased only when the regressor is exogenous, whereas

its bias sharply increases for soaring endogeneity. In this simple static model unfeasi-

ble KLS (which uses full knowledge of the actual endogeneity) is found to be (median)

unbiased, and so is TSLS when the employed instruments are valid. Since the validity

of instruments is in fact equally untraceable as the actual value of the endogeneity cor-

relation, consistent instrument-based estimators are actually unfeasible as well. When

instruments are invalid, just and over-identified IV/TSLS are biased, but we find that

this bias (unlike for OLS) is largely invariant regarding the degree of endogeneity. The

interquartile range of KLS proves always much more attractive than that of TSLS, es-

pecially when weak and/or invalid instruments are being used. Also for the hazardous

cases, where the Sargan test will reject invalid instruments with a disappointing proba-

bility very close to the significance level, the bias of TSLS is serious and the interquartile

range much larger than for KLS. The findings on the relative width of their actual in-

terquartile ranges demonstrate that also so-called identification-robust IV/TSLS inference

must often be less accurate than feasible KLS.

So, undeniably, it may often happen that TSLS results will not be disapproved, be-

cause the Sargan test produces a pretty large p-value, although the instruments are

actually invalid and generate inference of poor quality. Likewise, however, the accuracy

of an assessment of the degree of endogeneity may be poor, so that feasible KLS may be

biased as well. Therefore, we also simulated for KLS its median (which proved to be in-

variant with respect to the sample size) and interquartile range when using an erroneous

ρxu. The results made us conclude that the vulnerability of KLS to moderate errors in
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bounding ρxu, although substantial, seems more limited than that of TSLS when using

mildly invalid instruments. Moreover, KLS has an additional advantage: Whereas it is

not self-evident to examine in practice the sensitivity of TSLS with respect to varying

degrees of invalidity of the external instruments, the implementation of KLS which we

shall use in the applications below incorporates by default an insightful analysis of its

sensitivity regarding the actual degree of endogeneity.

4 Applications to classic studies on the return to

schooling

The upsurge in the use of instrumental variables techniques in microeconomics in the

1990s was triggered in particular by novel studies in labor and especially in education

economics, see the overviews in Card (1999, 2001) and Angrist and Krueger (2001). Below

we re-analyze the original data sets from two very influential papers, namely Angrist

and Krueger (1991) and Card (1995), where TSLS has been employed. We confront

their results with KLS findings on the validity of the adopted exclusion restrictions.

In addition, we will also compare the major inferences on the coefficients of primary

interest as obtained from the instrument-free approach with those from instrument-based

approaches, namely standard TSLS and one of its modifications as suggested by Conley et

al. (2012). We also explore whether the sensitivity analysis suggested by Oster (2019) can

add further value. Moreover, we will employ KLS-based instrument-free misspecification

tests. These are found to detect model failures which previously remained unnoticed.

Although we are aware that both the Angrist-Krueger and the Card analyses have

triggered a rich literature with many fruitful suggestions for making different use of the

classic data sets or of exploiting further relevant variables, we nevertheless limit ourselves

in this replication study to just a few of the empirical results from the well-known original

published articles. Our selection here is in fact strongly influenced by the particular

illustrations from these articles presented in the very recent textbook by Hansen (2022).

These classic IV/TSLS results suffice in our opinion to illustrate the various pros and

cons of the more recently developed instrument-based and instrument-free approaches.

Before we address the two classic studies, in the next subsection we first give some

general background to the particular type of endogeneity and orthogonality assumptions
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made in this literature, because these assumptions are usually left implicit, and do not

always seem well understood. Appendix C provides a more formal treatment of these

issues.

4.1 Endogeneity and instrumentation when regressors have been

omitted

The applications to be considered are characterized by the following. The causal rela-

tionships under study have the form of a linear (in the coefficients) regression model for

which the regressors fall into three distinct categories. We denote this demeaned model

therefore as

y = X1β1 +X2β2 +X3β3 + ε, (8)

where the Xj are n×Kj matrices and y and ε are n×1 vectors with E(ε | X1, X2, X3) = 0,

so all regressors are exogenous with respect to ε. The K3 > 0 variables X3 are unavail-

able. Thus, the model to be estimated has regressors X = (X1, X2) only. We assume

rank(X) = K1+K2 > 0. The distinction between the regressors X1 and X2 is that vector

β1 contains the coefficients of primary interest, for which we are keen to find a consistent

estimator.

Because the regressors X3 are unavailable, the model has – next to the disturbance ε

– an unknown individual effect represented by the n × 1 component γ = X3β3. For this

we suppose

γ = X3β3 ̸= 0, where E(γ | X) = X1ϕ1 +X2ϕ2. (9)

Hence, we allow that X3 is associated with X1 and X2. Substitution of (9) into (8) and

defining η = γ − E(γ | X), with E(η | X) = 0, gives

y = X1(β1 + ϕ1) +X2(β2 + ϕ2) + (η + ε), with E(η + ε | X) = 0.

Thus, regressing y on X will yield least-squares coefficients that are consistent for β1+ϕ1

and β2 + ϕ2, which represent the sum of the direct and, if any, the indirect effects (via

X3) of X1 and X2 on y. By using TSLS, though, it is possible to obtain under particular

conditions a consistent estimator for the direct effect β1 of the regressors X1.

Before we produce these particular conditions, we will first indicate some of the links
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of model (8) with the applications to follow. In these, the dependent variable y contains

observations on the log wage of individuals. Regressor X1 just contains the explanatory

variable schooling in years. Assessing its coefficient β1 is the major goal of the analysis.

Regressors X2 concern control variables, such as gender, age, race, residence, and time

effects. Unobserved component γ represents the effects on wage of ”ability”, which is

based on X3 regressors like: intelligence, having special skills, and notions expressing

appearance, upbringing, and charm. In model (8), which is assumed to contain all major

explanatories, all variables in X1, X2, and X3 are assumed to jointly cause y. They are

exogenous, because no immediate feedbacks from y into any of these seem realistic. Some

of the variables in X1, X2, and X3 will be mutually related. Variables in X2 can even

be causal for X1 (older generations may be less educated), and variables from X3 will

have an effect on X1 too, because family background will be one of the determinants

of the duration of education. So, X3 will have direct effects on y, expressed by β3, but

also indirect effects through X1, if ϕ1 ̸= 0. However, neither schooling nor ability will

be causes for the much more autonomous variables gender, age, and race, whereas these

variables from X2 are likely to have, next to a direct effect on y, also effects on X1 and

some of the variables in X3, as already mentioned.

In Appendix C we derive the conditions under which regressing y on X = (X1, X2),

while using an instrumental variable matrix Z = (Z1, X2), where Z1 contains at least

K1 external instruments, will result in consistent estimation of the coefficients β1 and

β∗
2 = β2 + ϕ∗

2, the sum of the direct effects β2 from X2 on y and any indirect effects

from X2 on y via unobserved component γ, where E(γ | X2) = X2ϕ
∗
2. These conditions,

formulated in more technical terms in Appendix C, are as follows. Variables Z1 should

have correctly been omitted from the full model (8). This means that Z1 has no direct

causal effect on y. However, unless β1 = 0, Z1 should have an indirect effect on y via its

association with X1. If this association is substantial, this avoids the problem of weak

instruments. Moreover, apart from any association with the variables in X2 that the

variables in Z1 and X3 may have, these two sets of variables (so after netting out their

association with X2) should be uncorrelated. Otherwise, TSLS will be inconsistent for

the estimation of β1.

Hence, X1 should contain the regressors from X for which one wants to assess their

direct causal effect on y. In the model that omits regressorsX3, an individual variable from
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X1 becomes endogenous, if –after netting out any association this variable or component

γ = X3β3 may have with the variables in X2− they are still correlated. Note that

allocating more regressors from X2 to X1 (so aiming to estimate the direct causal effect

of more explanatories of y) requires an extension of matrix Z1, with the associated extra

requirements regarding the uncorrelatedness of all its columns with γ (after netting out

their association with the fewer variables in X2).

When applying KLS, instead of finding external instruments Z1, an assessment of the

degree of endogeneity of the variables X1 is required. When interpreting the coefficients

of X2 as an amalgam of direct and indirect effects, their correlation with the errors can

safely be assumed to be zero.

4.2 Angrist and Krueger (1991)

In this article, referred to as AK below, a novel source for identification of the coefficient

on years of education in a wage equation has been suggested, namely quarter of birth.

Because laws on compulsory school attendance differ by state in the US, there is a very

moderate but distinctive source of variation in years of schooling due to quarter of birth.

Assuming that quarter of birth has no direct effect on earnings, quarter of birth dummies

would establish valid external instruments. An extremely large sample (n = 329, 509) on

individuals is available (1980 census: men born in 1930-1939). Most equations estimated

by AK use very many (up to 180) instruments, which are all dummies and (subsets of)

interactions of dummies for quarter of birth, year of birth, and state of birth. However,

many of these instruments turn out to be very weak, see Bound et al. (1995) and Staiger

and Stock (1997). Therefore, in his illustrations explaining dependent variable logwage,

Hansen (2022, Ch.12) decides to use just the 3 dummy external instruments constructed

from the quarter of birth, which jointly seem sufficiently strong. Due to the omission of

variables representing the effects of ability, intelligence, talent and the like, he treats the

regressor education in years (edu) as endogenous, whereas 20 further dummy controls

are treated as exogenous, namely: race (black), urban (smsa), married, nine distinct

year-of-birth dummies and eight particular region-of-residence dummies. That now the

coefficients of the latter will no longer represent direct effects should be (but usually is

not) mentioned in this literature. The reduced form equation for edu yields an F -test

of 31 on the joint significance of the three quarter of birth (qob) dummies, so they seem
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sufficiently strong indeed based on common practice.

We find the same TSLS results. Further calculations yield an estimate of ρ1, the

correlation of variable edu with the TSLS residuals, of -0.18 (using all 3 instruments),

and of -0.47, -0.53 and -0.08, when using just one of the instruments qob 2, qob 3, and

qob 4, respectively. Note, though, that in fact a positive ρ1 is expected, because years of

education is supposed to be positively correlated with the omitted explanatory compo-

nent ability/skills. Of course, these estimates of ρ1 are random, so may in fact not be

significantly negative. Any further relevant omitted regressors that are correlated with

an external instrument would ruin easy interpretation of the present TSLS findings. As

yet, the obtained negative ρ1 estimates provoke serious doubts about the current TSLS

findings.

[Figure 4.2.1 here]

On this particular specification used by Hansen (2022) in his textbook, and also

examined in Conley et al. (2012, p.269), we present KLS results2 in four panels with

graphs in Figure 4.2.1. The graph in the top-left panel shows asymptotic 95% confidence

sets for the coefficient of edu for a wide range of adopted ρ1 values. The KLS intervals

vary substantially though rather systematically with the value of ρ1. They are in fact

so narrow, that they appear as one line in the graph. The graph also shows the much

wider TSLS interval, which is invariant regarding ρ1. We note that the KLS findings

are in line with those obtained by TSLS if ρ1 were mildly negative indeed, but are in

sharp contrast for positive ρ1 values. Both the KLS and TSLS intervals are based on

the assumption that all regressors apart from edu are exogenous, which means that we

should interpret their coefficients (not presented in this figure) as representing both the

direct effects of these regressors and their indirect effects via the omitted regressors.

The depicted inference on the coefficient value of edu represents just its direct effect,

provided the endogeneity of edu, incurred due to the omission of explanatories that are

correlated with edu, has adequately been accommodated. This requires for TSLS validity

of the instruments, and for KLS focussing on a preferably narrow interval within (-1, 1),

2The results for empirical data have all been obtained by Stata, employing for KLS the kinkyreg Stata
program contributed to the Stata community and documented and illustrated in Kripfganz and Kiviet
(2021).
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which should include the true value of ρ1. By taking the union of all asymptotic 95%

KLS confidence intervals for, for instance, 0 ≤ ρ1 ≤ 0.2, we may conclude that with an

asymptotic confidence coefficient exceeding 95% the direct effect of edu is in the interval

[0.021,0.064] if ρ1 ∈ [0, 0.2] indeed.3 By taking the union of one-sided asymptotic 97.5%

confidence intervals, we may also conclude that, with an asymptotic confidence coefficient

exceeding 97.5%, the direct effect of edu is positive provided ρ1 ≤ 0.3, or is smaller than

0.06 if ρ1 ≥ 0. These KLS inferences are in sharp contrast with the established TSLS

conclusions.

The top-right panel of Figure 4.2.1 presents p-values of single and joint exclusion

restrictions tests on the three external instruments over a wide range of postulated ρ1

values. For the single tests, p-values of one arise for estimates ρ̂1 obtained by (just-

identified) IV estimation. In Kiviet (2020b) it has been demonstrated that this will always

happen, and does not carry any new information on possible validity of the instrument

as such. It simply expresses that IV, which adopts one particular exclusion restriction,

will yield residuals which have a correlation with the endogenous regressor for which

KLS will support this exclusion restriction. In line with that, it is no surprise that the

maximum p-value for the joint exclusion restrictions test is found for the value -0.18 of

the TSLS estimate of ρ1. What these graphs do portray is that, in case ρ1 is actually

positive, the obtained p-values provide evidence that feed serious doubt on the validity

of the exclusion restrictions. Only when one has a priori reasons to believe that ρ1 is

negative, these graphs provide some support for validity of the instruments. And, vice

versa, if one has a priori reasons to believe that the instruments must be valid, then the

graphs disclose information that the true value of ρ1 seems mildly negative.

If one finds it hard to believe that quarter of birth really has a direct effect on wage,

additional to any indirect effect via education, invalidity of these external instruments

does not seem due to wrongly excluding them as such, but to confronting them with the

biased residuals of a misspecified relationship. Then it seems most likely that there are

further omitted regressors, and that apparently the quarter of birth dummies happen to

be correlated with these, which renders them invalid instruments anyhow. Buckles and

Hungerman (2013) provide evidence that this is indeed the case for family background

3Further substantiation of the adopted sign and numerical bounds of ρ1 can be based on formula
(A.19) of Kiviet (2020b).
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variables.

The bottom two panels of Figure 4.2.1 demonstrate that the considered model fails

the various KLS-based misspecification tests regarding heteroskedasticity4 and RESET5

for any value of ρ1. Hence, we have to conclude that we need to be cautious about making

inference on β1 from the top-left panel.

[Figure 4.2.2 here]

The rejection of the exclusion restrictions could also inspire to adhere to the instrument-

based union of confidence intervals technique suggested by Conley et al. (2012) and pro-

grammed in the plausexog Stata command by Clarke and Matta (2018). For that we

have to adopt assumptions on the possible values of the three elements of vector ψ in the

augmented model

y = X1β1 +X2β2 + Z1ψ + ε, (10)

where X1 still has just one column (edu), and we use as controls both the former X2

and the three quarter-of-birth dummies collected in Z1. We can obtain empirical support

for assumptions on ψ by KLS as follows. The first three panels of Figure 4.2.2 present

KLS inference on the coefficients of the qob dummies in model (10). Supposing that

0 ≤ ρ1 ≤ 0.4, we can choose for these intervals [-0.05, 0.01], [0.0, 0.02] and [-0.05, 0.02]

respectively. The right-hand panel in the second row produces confidence intervals for

the coefficient of edu obtained by applying KLS to (10) and also by using the plausibly

exogenous approach. Note that the latter interval is invariant regarding ρ1. It overlaps

the TSLS interval presented in Figure 4.2.1 (because the chosen intervals do not exclude

ψ = 0), it has asymptotic confidence coefficient exceeding 95%, and is so wide that it is of

little practical use.6 It does not exclude that an extra year of schooling increases wage by

either an outrageous 50% or even reduces it by not less than 20%. Hence, it seems that

more efficient though endogeneity-robustified inference can be obtained by bounding the

4Here the joint significance is tested of the slopes in auxiliary regressions of the squared KLS residuals
on an intercept and particular sets of regressors. In these sets, X2 refers to the exogenous regressors in
the model, Z1 to the external instruments, and Xadj

1 to the estimated exogenous component of X1.
5Here the joint significance is tested of the additional regressors, when the model is augmented by

ŷ2i , ..., ŷ
d
i , where the integer order is d ≥= 2 and ŷi is the estimated exogenous component of yi.

6Using the same data, Conley et al. (2012) produce similar results, where all three qob coefficients
are supposed to have a value in [−ψ,ψ] for ψ ∈ [0, 0.02]. Focussing on ψ = 0.01 they conclude that, using
their method, the data are essentilly uninformative about the returns to schooling.
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endogeneity correlation of an endogenous regressor and apply KLS, than by bounding

the degree of violation of exclusion restrictions to a realistic degree.

The bottom row of panels in Figure 4.2.2 shows that instrument-free heteroskedasticity

and RESET tests yield very low p-values, irrespective of the chosen value for ρ1. So,

formally, these findings reject specification (10) very strongly. On the other hand, given

the extraordinarily large size of the sample, one may expect that any specification of this

relationship will fail, if it uses just a few dozen parameters. Nevertheless, we suppose

that the model does require a serious respecification, as already had been suggested a

long time ago in Bound et al. (1995), Bound and Jaeger (2000), and many other studies.

We found that augmenting the model just by the controls age in years and its square,

as suggested by Bound and Jaeger (1991), does not improve the situation. Hence, it

seems that the set of explanatory variables included in this classic data set should be

extended by further relevant explanatories, which is beyond the purpose of our primarily

methodological replication study.

To obtain further insights on the sensitivity of the results, we might also employ the

approach put forward by Oster (2019). In line with her suggestions, we start by conser-

vatively assuming that there is equal selection on the observables and the unobservables

(also suggested by Altonji et al., 2005), and that hypothetically including all unobserved

controls would fully explain the variation in the outcome variable (thus not allowing for

measurement error in wages). Formally, this implies in our notation

δ =
E(γ∗iXi1)

E(γ∗i )
2

E(Xi2β
∗
2)

2

E(Xi2β∗
2Xi1)

= 1

and V ar(εi) = 0, based on the model in (4.1) and (4.2), and where β∗
2 = β2 + ϕ∗

2. ϕ
∗
2

are the coefficients in a linear prediction of the unobserved component γ on the observed

control variables X2, and γ
∗ is the corresponding prediction error that is orthogonal to

X2; see Appendix C. A practical complication of the Oster (2019) estimator is that it

can yield multiple solutions. Only one of them is consistent, but it may not always be

obvious which of them it is. Computed with Oster’s psacalc Stata command, we obtain

-0.137 and 0.252 as the candidate solutions for the return to schooling under the above

assumptions. Compared to the KLS results, neither of them appears plausible as they

correspond to the KLS estimates for an either extremely positive or extremely negative
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ρ1. Oster (2019) proposes to select the solution under which the omitted-variables bias

does not change the direction of the covariance between the endogenous regressor and the

observed control variables. Here, this would be -0.137, which tends towards zero when the

maximum R-squared, Rmax, from the hypothetical regression with all control variables is

lowered. The second solution would become even larger and thus more implausible. KLS

can thus help to pick the correct solution for the Oster (2019) estimator. For Rmax = 0.8

or Rmax = 0.5, the bias-adjusted estimator of the returns to schooling becomes -0.08 and

-0.004, respectively. Those estimates still correspond to a relatively large ρ1, and the

negative effect sign is hardly convincing. The sign eventually flips when we also lower the

bound on the proportionality factor, δ, for the selection on observables to the selection

of unobservables. With Rmax = 0.5, an effect size of 0.035 can be reached by lowering

δ from 1 to 0.5, i.e. making selection on observables twice as important as selection on

unobservables. Yet, the choices for these tuning parameters are quite arbitrary. In this

example, the KLS estimates help to narrow the bounds for the Oster (2019) approach,

but the latter hardly helps to improve inference without informative prior knowledge on

δ and Rmax.

4.3 Card (1995)

Card too examines the individual wage equation. His analysis is based on US survey data

from 1976 and involves 3010 young men. Again, the coefficient of primary interest is the

effect of years of education (educ) on the log of individual wage (lwage). Further covari-

ates are experience (exper) and its square, and one ethnic (black) and two demographic

dummy variables, namely south and urb (urbanization). As in AK, the additional effect

of skills/ability (for which no data are available) are necessarily omitted, whereas these

are supposed to be positively correlated with years of education. So again, this regressor

should be positively correlated with the error term, and the education effect as obtained

from OLS estimation should be positively biased. As an instrument, Card uses a dummy

variable college indicating whether there is a college in the county where the young man

concerned lives. A college in the proximity is supposed to have a direct positive effect

on years of schooling, but no direct effect on wage. Hence, if this proximity variable is

a valid instrument indeed, one would expect the IV estimate of the education coefficient

to be smaller than the OLS coefficient. However, as in the foregoing subsection, it is
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not. One obtains (with non-robustified standard errors in parentheses) for OLS 0.0740

(0.0035) and for IV 0.1323 (0.0492), whereas the correlation between the IV residuals

and the education variable is -0.21. Note that the IV coefficient estimate is almost twice

that of OLS, whereas its standard error is about 14 times as large as that of OLS.

The question is again: How to make sense of this? One possibility would be to simply

blame weakness of the instrument for these estimation problems and contradictions, but

there are other options too. A valid point raised by Card is that there may be other

causes of endogeneity here than just omitted variables, such as measurement errors in

years of education, which could explain a negative endogeneity correlation. Moreover, if

education is endogenous, so will experience be, and also its square, because experience is

constructed simply by subtracting education + 6 from age. Hence, we should allow for

at least three endogenous regressors, and could use age and its square and the college

dummy as instruments to achieve identification. Note, though, that a constant correlation

between education and the error term implies exactly the opposite correlation between

experience and the error term, and will have peculiar consequences for the endogeneity

correlation of experience squared. This will complicate a KLS analysis. In the end,

though, Card concludes that experience squared is in fact insignificant.

As applying KLS to models with more that one endogenous regressor –although

possible– is a bit cumbersome too, we will choose a different road. Because

exper = age− educ− 6, (11)

the model

lwage = β1educ+ β2exper + β3exper
2 + ...+ u (12)

implies

lwage = β1educ+ β2(age− educ− 6) + β3(age− educ− 6)2 + ...+ u

= (β1 − β2 + 12β3)educ+ (β2 + 12β3)age+ β3age
2 − 2β3age× educ+ ...+ u

= θ1educ+ θ2age+ θ3age
2 + θ4age× educ+ ...+ u. (13)

If β3 = 0, then θ3 = θ4 = 0 and β1 = θ1 + θ2. Hence, inference on β1 of (12) can in this

case also be obtained from simply replacing the regressor experience by age and analyzing
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the sum of the education and age coefficients in (13). We will do so in the results below,

but also keep initially age squared in the regression (but not the endogenous interaction

of age and educ) and use, self-evidently, age and its square as internal instruments. Then

the model contains one endogenous regressor, has six exogenous regressors, and uses one

external instrument.

Just-identified TSLS for this restricted version of (13) yields (omitting presentation

of the intercept):

lwage = 0.094educ+ 0.082age− 0.073age2/100− 0.101black − 0.099south+ 0.108urb

(0.050) (0.071) (0.124) (0.075) (0.030) (0.050)

[0.049] [0.070] [0.123] [0.073] [0.030] [0.050]

Below the coefficients, we first present the usual standard error estimates in parentheses

and in the next line their (hardly affected) robustified (regarding heteroskedasticity)

versions in square brackets. In the reduced-form equation for education, the regressor

college has an F -value of 10.5, so although not distinctly weak the single instrument is

certainly not strong either. Using, as Card does, two separate dummy instruments, by

splitting college into presence in the county of public and private colleges, yields:

lwage = 0.121educ+ 0.054age− 0.023age2/100− 0.060black − 0.085south+ 0.082urb

(0.038) (0.065) (0.114) (0.059) (0.026) (0.040)

[0.038] [0.065] [0.113] [0.058] [0.027] [0.040]

Now, the relevant F -test is 10.2, so it has not improved. The Sargan test has p-value

0.46. Both being college dummies, it seems very unlikely that one of these instruments

would be valid and the other invalid. From the simulations we learned that this p-value

for the Sargan test may just as well mean that both instruments are valid or both invalid,

which is not very reassuring.
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Next, leaving out the insignificant age-squared regressor gives:

lwage = 0.121educ+ 0.041age− 0.060black − 0.085south+ 0.082urb (14)

(0.038) (0.003) (0.060) (0.026) (0.041)

[0.038] [0.003] [0.058] [0.027] [0.040]

This goes with an F -value of 10.2 and a Sargan p-value of 0.54, whereas the sum of

the coefficients of education and age is estimated to be 0.162 with standard error 0.039,

which conforms extremely closely to the result obtained by Card when allowing for three

endogenous regressors. Next, we shall examine what KLS yields for model (14).

[Figure 4.3.1 here]

Figure 4.3.1 contains four panels with graphs. The top-left panel shows what we

can say about the magnitude of the direct effect θ1 of education on log wage, assuming

model specification (14) to be adequate, while we pretend to know the true value of ρ1.

KLS shows that this effect is positive, provided ρ1 < 0.18, whereas for ρ1 > 0 the effect

is smaller than 0.04, which is substantially smaller than suggested by TSLS. However,

despite the reassuring Sargan test, the top-right panel of the figure casts serious doubts on

the validity of the instruments public and private. The graphs on the exclusion restrictions

tests show the same pattern as in the foregoing subsection. On the basis of the IV analysis,

when just using the public college dummy as an instrument, residuals are obtained which

have correlation -0.48 with the endogenous regressor education, and when using just the

private college dummy the estimate of ρ1 is -0.66. When using both instruments in TSLS

it is -0.47. Again, the KLS exclusion restrictions tests have very high p-values at these

specific correlations. However, if ρ1 is positive, as initially expected, then the exclusion

restrictions are very strongly rejected. So, the initial conjecture that model (14) is well

specified, apart from lacking the explanatory variable ability/skills, whereas proximity

of a college has a positive effect on education but no direct effect on wage, is strongly

knocked down. The panels in the bottom row of Figure 4.3.1 provide a mixed picture

regarding the econometric checks on the adequacy of the specification. If for some yet not

understood reason ρ1 is negative indeed, then we find that the model could be affected

by heteroskedasticity.
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An obvious explanation for the invalidity of the instruments could be that families

which endow their children with favorable abilities and skills do also actively choose to

live near a college. Then the college variables would be invalid instruments and KLS

would correctly detect that these have been wrongly excluded from specification (14).

In a KLS analysis we can easily augment this model by these two extra controls, and

estimate this ”underidentified” model without adopting any new external instruments.

Just for illustrative purposes, we present here KLS estimates for this augmented model

while adopting the alternative identification assumption ρ1 = 0.1. This mild endogeneity

of educ yields:

lwage = 0.018educ+ 0.039age− 0.212black − 0.129south+ 0.171urb (15)

(0.003) (0.002) (0.018) (0.016) (0.017)

+ 0.041public− 0.012private

(0.017) (0.021)

We note that the former instruments are not both individually significant when ρ1 = 0.1.

Comparing with (14), KLS yields much smaller standard errors and substantially different

coefficient values. More detailed results on model specification (15) for arbitrary ρ1 can

be found in Figures 4.3.2 and 4.3.3.

[Figure 4.3.2 here]

From the top row of Figure 4.3.2 one may infer that, supposing 0 ≤ ρ1 ≤ 0.4, the

coefficients of the earlier excluded variables public and private may have values in the

intervals [0.0, 0.1] and [-0.05, 0.04] respectively. In the left graph of the next row of Figure

4.3.2 these intervals have been used to apply the Conley et al. (2012) method to obtain a

conservative asymptotic 95% confidence interval for the coefficient of education. Because

validity of the exclusion restrictions is permitted, this interval overlaps with the TSLS

interval. It yields the extremely wide and thus uninformative interval [-0.25, 0.24] for the

direct effect of an additional year of schooling. Excluding private from this analysis (not

presented in the Figures) yields the narrower but still very wide interval [-0.19, 0.20].

Adopting the rather wide interval [0, 0.4] for ρ1, KLS produces for the direct effect θ1

of education a value in the interval [-0.04, 0.04], whereas (taking into account that years
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at school do not accumulate experience, although increasing age) for education plus age

the effect β1 = θ1 + θ2 is estimated to be in [-0.01, 0.08]. For mildly positive ρ1 values

the bottom row of graphs in Figure 4.3.2 shows that heteroskedasticity does not seem a

problem, whereas the RESET tests – although less reassuring – do not strongly reject the

specification either. Hence, there is no convincing evidence that KLS inference on model

(15) is untenable, whereas there surely is for TSLS inference on model (14).

[Figure 4.3.3 here]

Therefore, it seems quite likely from Figure 4.3.3 that the earlier TSLS findings on

the direct plus indirect effects of the controls black, south, and urb are all strongly bi-

ased towards zero. According to the KLS findings their actual effects are much more

pronounced, at the expense of the direct effect of years of education.

Further sensitivity analysis for the sum of the two coefficients θ1 and θ2 in model (4.6)

along the lines proposed by Oster (2019) is not feasible for this application, as it is only

applicable to a single treatment effect. Reverting to specification (4.5) is not helpful either

due to the link between exper and educ. Assuming that age and other control variables

are not informative for the unobserved skills/ability component, we cannot disentangle

the influence of ability on educ from that on exper (and other control variables). Put

differently, after netting out exper from the unobservables, educ will be unrelated to the

unobservables as well.

5 Conclusions

In this study, we demonstrate that empirical instrumental variables based findings will

often be surrounded by serious doubts. Whether or not instruments are really valid

cannot be assessed positively by unambiguous instrument-based data analysis, whereas

we showed that mildly invalid instruments devastate the quality of inference. Irrespective

of the validity of the instruments used, instrument-based inference is poor anyhow when

instruments are weak. Then standard confidence intervals are over-optimistic, and more

sophisticated weak-instrument robust confidence intervals are generally extremely wide

and therefore often meaningless for practical decision making.

We highlight here an additional fundamental problem. This occurs in models where

instrumental variables are being used to overcome omitted variables problems. Such
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studies have to be defended on the basis of theoretical arguments supporting the validity

of the proposed external instruments. These are required to have no direct effect on the

dependent variable, but a substantial indirect effect via the regressors for which one seeks

consistent estimators for their direct causal effects. Any further regressors are just used

as controls, in order to mitigate the complexity of the omitted component of the model.

If the candidate external instruments have no direct effect on the dependent variable

indeed, this does not yet guarantee that they are valid instruments in the underspecified

model. The additional requirement for that, which is usually not being discussed in most

applications, is that these external instruments and the omitted explanatory variables are

mutually uncorrelated, or if they are correlated, that this is just due to both having an

association with the included control variables. Any association they may both have with

any other variables renders the external instruments invalid. Hence, proper exclusion

of the instruments from the fully specified model is insufficient; consistent estimation

of the direct effects of the endogenous regressors in the model with omitted regressors

requires extra arguments for validity of the instruments in the underspecified model. If

the external instruments are valid indeed, the resulting estimators of the coefficients of

the control variables will represent the sum of their direct effect and their indirect effect

through the omitted variables.

So, the whole issue whether instrumental variables based inference is worthwhile in

this context boils down to checking the following four aspects: (A) for which explanatory

variables does one desire inference exclusively on their direct effect on the dependent

variable; (B) are sufficient candidate external instruments available for which one can

argue that they have no direct effect on the dependent variable; (C) both these candidate

external instruments and the omitted regressors should not depend on the same causal

factors, apart from the control variables of the model; and (D) partialling out any effects

from the controls, the effect of the candidate external instruments on the endogenous

regressors should have a magnitude that will lead to sufficiently efficient inference.

Aspects (B) and (C) cannot directly be examined by statistical methods, because

this would require observations on the omitted regressors. A Sargan test, which is only

available when one has more candidate external instruments than endogenous regressors,

is really not equipped to provide a decisive judgement regarding (B) and (C) as we

demonstrate in this study by simulation.
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Therefore, an approach avoiding the use of instrumental variables all together seems

most welcome. However, also the instrument-free approach laid out and illustrated here is

certainly not free from hurdles. It requires to adopt numerical bounds on the correlation of

the endogenous regressors and the unobserved model error. In a badly specified model,

in principle all regressors may be correlated with the disturbance term. When one is

ignorant about these specification failures it seems impossible to make useful assumptions

on the likely numerical range of the actual endogeneity correlations. In the present study,

we have demonstrated the instrument-free approach when allowing for just one single

endogenous regressor. Young (2022), surveying many journal volumes, reports that in

about 90% of the articles presenting instrumental variables based inferences, the models

concerned do just have one endogenous regressor. Hence, many practitioners consider this

to be the most relevant case, although it is evident that simultaneous equations models

will often have many more endogenous regressors.

On the other hand, in models with omitted variables problems, our analysis shows

that just allowing for one endogenous regressor is vindicated when one focusses on the

estimation of the direct causal effect of just one of its explanatories at a time. For such

cases we could demonstrate for two classic empirical data sets that by the KLS technique,

over a very wide range of possible endogeneity correlation values, misspecification test

statistics can be presented which examine possible failures of the model in particular

dimensions, including the wrong exclusion of controls, previously unavailable. In a KLS

context, the interpretation of a (non-)rejection of such tests is reasonably straightfor-

ward, because it cannot be blurred by the possible use of invalid instruments. Therefore,

a KLS-based test for omitted regressors, possibly cast into the special form of missing

interactions or improper functional form (RESET), or geared to detect heteroskedastic-

ity or serial correlation7, may produce more solid evidence on the adequacy of adopted

model assumptions than can be generated by instrument-based techniques. In the latter

context, no misspecification test procedure can unequivocally disentangle whether it are

the instruments, the model specification, or both, which require respecification.

Especially in models with omitted variables it seems not unlikely that the errors may

be affected by conditional heteroskedasticity, whereas the present KLS procedure pre-

7KLS cannot just be applied to cross-section data, but also to econometric time series models, see
Kiviet (2020c).
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supposes conditional homoskedasticity. The derivation of heteroskedasticity-consistent

standard errors for KLS, although challenging, has not yet been undertaken. However,

KLS heteroskedasticity testing can eventually be used to estimate a nonconstant skedas-

ticity function, which may be used to weight the data. The results in Romano and Wolf

(2017) suggest that aiming to find proper weights for the sample observations, in order to

regain homoskedasticity, may contribute more to improving inference than just employing

robustification naively to unweighted data. Hence, even if a KLS robustification formula

were available, one should not use this as an excuse to not constructively approach any

heteroskedasticity.

One of the arguments put forward by Hansen (2022) when advising practitioners to

use a very small significance level when interpreting the Sargan test of over-identifying

restrictions is that the occurrence of rejections should be limited, simply because it is not

at all clear what one should do when the Sargan test rejects. In our opinion such clarity

can be provided now: Apply KLS, and do so, too, when the Sargan test does not reject.

Supplementary material

The three appendices of this paper are available as one separate document. Code for

the applications (Stata) and the simulations (Matlab) can be obtained from the authors.
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Figure 4.2.1 KLS results on model specification (12.96) for the Angrist-Krueger (1991) data
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Figure 4.2.2 KLS results on model specification (4.4) for the Angrist-Krueger (1991) data
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Figure 4.3.1 KLS results on model specification (4.9) for the Card (1995) data
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Figure 4.3.2 KLS results on model specification (4.10) for the Card (1995) data
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Figure 4.3.3 KLS results on model specification (4.10) for the Card (1995) data
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Reassessment of classic case studies in labor

economics with new instrument-free methods

Jan F. Kiviet Sebastian Kripfganz

Appendices

The following appendices provide further background to the Monte Carlo simulation

study and to the options to cope with omitted relevant regressors by TSLS and KLS:

Appendix A gives a detailed description of the graphically presented findings

from the simulation study.

Appendix B provides full technical details on the chosen design of the

simulation experiments.

Appendix C indicates the technical requirements for consistent estimation of the

direct causal effect of particular regressors by TSLS or by KLS in

linear regression models with omitted regressors.
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A. Findings from the simulation study

The data generating process we used in the Monte Carlo experiments, presented in all

its details in Appendix B, is a generalization of those used in the earlier studies on

KLS. It concerns a linear regression model for a dependent variable y with an inter-

cept and one slope coeffi cient β for the single possibly endogenous regressor x. The

very simple model y = c + βx + u has i.i.d. (independent and identically distributed)

disturbances u. The correlation of the regressor and the disturbance, indicated by ρxu,

can be controlled in the experiments. Next to the internal instrument established by

the constant, there are two external instrumental variables, z1 and z2. For these their

correlation (strength/weakness) with the single regressor can be controlled by ρz1x and

ρz2x respectively. Moreover, their correlation (validity/invalidity) with the disturbance

can be controlled by ρz1u and ρz2u.

For various interesting combinations of ρxu, ρz1x, ρz2x, ρz1u, ρz2u and sample size n

we will examine: (i) the rejection probability of the Sargan test at nominal significance

level α, where we shall consider 0.01 ≤ α ≤ 0.5; and (ii) the estimation errors β̂ − β

for various estimators of the slope coeffi cient, namely OLS, IV (just using the external

instrument z1), TSLS (using both z1 and z2) and the new instrument-free estimator

KLS. In Appendix B it is proved that all presented findings are invariant with respect

to the actual values of the intercept c and slope β, and also to the means of x, z1 and

z2. Therefore, without loss of generality, we fixed these all at zero. The results are also

invariant regarding the variance of z1 and of z2. Therefore we gave σz1 and σz2 value unity.

In the graphs below we present the quartiles of the distribution (as assessed from 100,001

replications of the experiments) of the various estimation errors for the case σu/σx = 1.

Outcomes for different σu/σx ratios can be obtained simply by adapting the scale on the

vertical axis accordingly. For the Sargan test we present the rejection frequency over all

replications of the simulation for different values of α. These frequencies are in fact not

only invariant with respect to β, σz1 and σz2 , but also to σu and σx.

Not all values smaller than one in absolute value for the five correlation coeffi cients

are compatible. For instance, it is self-evidently impossible to have ρz1u = 0, whereas

both ρxu and ρz1x are close to unity. Close to boundary values, and to notoriously

problematic cases such as ρz1x → 0, ρxu → 1, or n very small, instrumental variable

estimators may show pathological behavior. It is not our intention here to demonstrate
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that such cases exist and are also problematic for the Sargan test.1 Our primary aim

is here to demonstrate that serious problems occur as well for parameter combinations

which at first sight seem pretty harmless. Therefore we start to examine a reasonably

large sample (n = 250) and rather middle of the road combinations of the correlations

arising from:

ρz1x ∈ {0.3, 0.6}, ρz2x ∈ {0.1, 0.4},

ρz1u ∈ {0.0, 0.1}, ρz2u ∈ {0.0, 0.2}, (A.1)

ρxu ∈ {0.3, 0.6}.

Hence, the instruments will not be chosen ultra-weak, nor extremely invalid. The estima-

tor error quartiles will be examined over the whole range 0 ≤ ρxu ≤ 0.9, but the Sargan

test rejection frequency only for the two ρxu values given in (A.1). The artificial samples

drawn are typical for cross-section data, because for all series their n observations are

drawn independently. Moreover, we took all of them from the Gaussian distribution.

[Figure A.1 here]

For the various indicated specific situations the four left-hand panels of Figure A.1

contain rejection frequencies of the Sargan test, and the four right-hand panels present

the quartiles of the distributions of the four estimation methods compared here. Each

row of panels concerns a specific situation regarding instrument (in)validity. Each left-

hand panel presents rejection frequencies over a range of nominal significance levels α

for the same eight different situations regarding degree of simultaneity and strength of

the two instruments. Each right-hand panel presents over a range of values of the en-

dogeneity correlation the three quartiles of the estimation error of the slope coeffi cient

for each of four estimation techniques, and for different situations —when relevant—re-

garding instrument strength. Therefore, every right-hand panel contains three similarly

colored/marked lines for the same eight different estimators/cases as indicated in the

legend. Of course, for each triple of lines the central one is the median. The other two

lines give an impression of the dispersion of the distribution of the estimation errors

around the median. Their vertical distance represents the interquartile range: of the

generated estimation errors 50% landed within these two lines for each ρxu value.
1This is one of the main objectives in: Davidson, R., MacKinnon, J.G., 2015. Bootstrap tests for

overidentification in linear regression models. Econometrics 3, 825-863.
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In the top-row of panels both instruments are valid. The top-left panel shows that

for the examined eight cases mentioned in the legend the Sargan test shows no note-

worthy size problems: the actual probability of type I errors is extremely close to the

nominal significance level for all α values examined. In the top-right panel, for all eight

estimators/cases represented, except OLS, the three lines are found to be almost hori-

zontal. Thus, these distributions are hardly determined by endogeneity of x, and they

suggest median unbiasedness, especially for moderate values of ρxu. On the other hand,

the estimation errors of OLS seem proportional to the degree of endogeneity. Given the

relatively small dispersion of OLS and KLS, the graphs show the increasing effects on

the dispersion of using weaker and fewer instruments. Note that the dispersion of OLS

improves for higher ρxu and is not beaten by any of the other estimators, although KLS

comes close. It is striking that the KLS estimator beats all other estimators when taking

both median bias and interquartile range into account. Note, though, that this is the

unfeasible version of KLS, which uses full knowledge of the actual value ρxu. However,

one should realize that the instrument based estimators build on assuming ρz1u and ρz2u

both being zero, whereas in practice their true values are in fact unknowable too.

The second graph on the Sargan test shows what the effects are on its rejection prob-

ability when one of the two instruments is mildly invalid. When the valid instrument

is relatively weak we see that the Sargan test will not very often detect the instrument

invalidity. The situation is slightly better when the valid instrument is stronger. How-

ever, when using α = 0.05 then instrument invalidity will be detected with probability

0.3 at most (for the sample size and correlation combinations examined), so the type II

error probability is at least 0.7. The adjacent panel shows that nondetected instrument

invalidity (of just ρz1u = 0.1) is devastating for the estimators based on instruments,

especially for the IV estimator just using the invalid instrument. The TSLS estimators

based on a valid and an invalid instrument are also seriously affected and for most their

interquartile range does no longer overlap with that of KLS. For ρxu small OLS is in fact

to be preferred to IV or TSLS. Note that the OLS and KLS results are similar in all

four rows of panels, because they are invariant to the properties of the two instruments.

In the third row of panels instrument z2 is invalid (ρz2u = 0.2), so the IV results

are similar to those in the top panel. Using α = 0.5 would lead for all cases examined

to detection of the invalidity with a probability above 0.9, and above 0.5 when using

α = 0.05. The effect on the estimation errors of TSLS is more determined by the strength

of the valid instrument than by the strength of the invalid instrument.
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In the fourth row both instruments are invalid, and here we clearly note the perils of

the Sargan test not being consistent. For some cases the rejection probability is quite

high, but for two of them it hardly exceeds the nominal significance level. These are

the two cases where ρz1x = 0.3 and ρz2x = 0.4, so the most seriously invalid instrument

is also the strongest. The area in the parameter space where the Sargan test will lack

power for the chosen data generating process can be derived analytically, see (B.17).

The bottom-right panel dramatically undermines trust in instrument-based methods,

as this shows that the TSLS estimator for these often Sargan-approved cases is very

badly biased over the whole range of ρxu values. Note that the KLS results are always

the most attractive in all four right-hand panels, simply because they are not based on

instruments and thus do not require the doubtful approval by the Sargan test.

[Figure A.2 here]

Figure A.2 presents some results for a much smaller and for a much larger sample size

than 250. We just cover the cases to be compared with the second and fourth rows of

panels of Figure A.1. The size control in this simple cross-section model (not presented

in the figure) was found to be close to perfect, irrespective of the sample size (whereas

it has been established that size problems for the Sargan/Hansen test are serious in the

context of dynamic panel data models). As is to be expected, the detection probability of

instrument invalidity is generally lower in smaller samples and larger in bigger samples.

For most cases it is (almost) one when n = 2500, but even then (and not surprisingly

also for n = 50) for the same particular cases as in Figure A.1 the detection probability

is alarmingly low, with devastating consequences for inference on β as the right-hand

graphs show. Note that after a rejection by the Sargan test, producing inference on β

requires a further search to find valid instruments.

[Figure A.3 here]

Next we examine the vulnerability of KLS regarding an incorrect assessment rxu of

the true endogeneity correlation ρxu. Figure A.3 presents the quartiles of β̂KLS(rxu) for

all compatible combinations of ρxu = −0.9(0.1)0.9 and rxu− ρxu = −0.3(0.1)0.3, so that

|rxu| < 1. Results are given for n = 50, 250, 2500 and 25000. The four panels clearly show

5



that the median of the various distributions of the estimation errors seems invariant to

sample size. Apparently the median bias in finite samples is for n ≥ 50 simply given by

the inconsistency of KLS. This inconsistency is only zero when the correct ρxu value has

been used. Of course, the sample size does have a mitigating effect on the interquartile

range, which is close to zero when n is very large. We see that, roughly, when n = 250

and |ρxu| ≤ 0.4 an error of ±0.3 may give rise to a shift of the quartiles of up to about

0.5×σu/σx, and about half of that for errors of ±0.2. The latter vulnerability, although

substantial, seems more limited than that of IV/TSLS when using mildly weak and/or

mildly invalid instruments.
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Figure A.1 Simulation results for n = 250; σx/σu = 1; and correlations (A.1)
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Figure A.2 Simulation results for n = 50, 2500; σx/σu = 1; and correlations (A.1)
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Figure A.3 KLS quantiles using a wrong ρxu for n = 50, 250, 2500, 25000.
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B. Further details on the chosen simulation design

The Monte Carlo design used in Appendix A is defined as follows. Let εi, ξi, ζi1 and ζi2

be four mutually independent series (i = 1, ..., n) of identically distributed independent

drawings with mean zero and unit variance. From these we construct the four series

ui = σuεi ∼ iid(0, σ2u), (B.1)

xi = σx[(1− ρ2xu)1/2ξi + ρxuεi] ∼ iid(0, σ2x), (B.2)

zij = σzj(ρzjζjζji + ρzjξξi + ρzjuεi) ∼ iid(0, σ2zj) for j = 1, 2, (B.3)

where all ρ coeffi cients do not exceed 1 in absolute value; moreover,

ρ2zjζj + ρ2zjξ + ρ2zju = 1 for j = 1, 2. (B.4)

Obviously, σxu = ρxuσxσu, σzju = ρzjuσzjσu and σzjx = σzjσx[ρzjξ(1− ρ2xu)1/2 + ρzjuρxu],

hence ρzjx = ρzjξ(1− ρ2xu)1/2 + ρzjuρxu, which yields

ρzjξ = (ρzjx − ρzjuρxu)(1− ρ2xu)−1/2, (B.5)

for ρ2xu < 1. From (B.4) we also have

ρzjζj = (1− ρ2zjξ − ρ
2
zju

)1/2. (B.6)

Hence, when values for σu > 0, σx > 0, σzj > 0, |ρxu| < 1,
∣∣ρzjx∣∣ ≤ 1 and

∣∣ρzju∣∣ ≤ 1 are

chosen, we can generate series for ui and xi and find from (B.5) matching values for ρzjξ

and for ρzjζ from (B.6), so that series zi1 and zi2 can be generated as well. However, the

choices for ρxu, ρzjx and ρzju are only compatible if they yield values for ρ
2
zjξ
and ρ2zjζj

such that 0 ≤ ρ2zjξ ≤ 1 and 0 ≤ ρ2zjζj ≤ 1. This requires

0 ≤
(ρzjx − ρzjuρxu)2

(1− ρ2xu)
≤ 1 (B.7)

and

0 ≤ 1−
(ρzjx − ρzjuρxu)2

(1− ρ2xu)
− ρ2zju ≤ 1. (B.8)

The latter implies

0 ≤ 1− ρ2xu − (ρzjx − ρzjuρxu)2 − ρ2zju(1− ρ
2
xu) ≤ 1− ρ2xu

or

0 ≤ (1− ρ2xu)(1− ρ2zju)− (ρzjx − ρzjuρxu)2 ≤ 1− ρ2xu,
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giving the two requirements

(ρzjx − ρzjuρxu)2 ≤ (1− ρ2xu)(1− ρ2zju), (B.9)

and

−ρ2zju(1− ρ
2
xu)− (ρzjx − ρzjuρxu)2 ≤ 0.

The latter will always be satisfied, whereas restriction (B.9) implies that (B.7) will also

be satisfied.

So, by choosing values |ρxu| < 1,
∣∣ρzjx∣∣ ≤ 1 and

∣∣ρzju∣∣ ≤ 1, which obey (B.9), we

have two instruments with correlation

ρz1z2 = ρz1ξρz2ξ + ρz1uρz2u

= (ρz1x − ρz1uρxu)(ρz2x − ρz2uρxu)(1− ρ2xu)−1 + ρz1uρz2u.

For each realization of the series ui, xi and zij in the simulation replications, we may

first subtract their respective sample average from each observation. In that way we

cover a model with one slope coeffi cient and an arbitrary intercept, to be estimated by

OLS, KLS, IV or TSLS, because there are next to the intercept two (possibly invalid)

instruments, each with a possibly non-zero arbitrary mean which has been partialled

out. The dependent variable is generated by the model

yi = xiβ + ui. (B.10)

This can be estimated by

β̂OLS =
x′y

x′x
= β +

x′u

x′x
,

β̂KLS = β̂OLS − ρxu
(
û′OLSûOLS

x′x

)1/2
, where ûOLS = y − xβ̂OLS, û′OLSûOLS = u′u− (u′x)2

x′x
,

β̂
(j)
IV =

z′jy

z′jx
= β +

z′ju

z′jx
, j = 1, 2,

β̂TSLS =
x′Z(Z ′Z)−1Z ′y

x′Z(Z ′Z)−1Z ′x
= β +

x′PZu

x′PZx
, with Z = (z1, z2) and PZ = Z(Z ′Z)−1Z ′.
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For the estimation errors we find, writing ξ∗i = (1− ρ2xu)1/2ξi + ρxuεi,

β̂OLS − β =
σuΣiξ

∗
i εi

σxΣiξ∗i
2
, (B.11)

β̂KLS − β =
σuΣiξ

∗
i εi

σxΣiξ∗i
2
− ρxu

{
σ2uΣiε

2
i

Σix2i
− σ2u[Σiεixi]

2

[Σix2i ]
2

}1/2
=
σu
σx

{
Σiξ

∗
i εi

Σiξ∗i
2
− ρxu

[
Σiε

2
i

Σiξ∗i
2
− Σiξ

∗
i εi

(Σiξ∗i
2)2

]1/2}
, (B.12)

β̂
(j)
IV − β =

σu
σx

Σi(ρzjζζij + ρzjξξi + ρzjuεi)εi

Σi(ρzjζjζij + ρzjξξi + ρzjuεi)ξ
∗
i

(B.13)

β̂TSLS − β =
x′PZu

x′PZx
. (B.14)

Because PZ is invariant with respect to the scale of the vectors z(1) and z(2) the estimation

errors of TSLS, like those of IV are invariant with respect to σz1 and σz2 , so without

loss of generality we may fix these at value 1.

It is easily seen that all the estimation errors are also invariant regarding β and are all

a multiple of σu/σx. Hence, without loss of generality we may choose in the simulations

β = 0, σz1 = σz2 = 1 and σx = 1. Then the dispersion of all estimators can be regulated

by varying σu. However, their relative differences will be invariant with respect to σu.

So, by just choosing σu = 1 all relevant information will be obtained, through choosing

relevant compatible values for the remaining design parameters: n, ρxu, ρzjx and ρzju,

where the latter two determine ρzjξ and ρzjζj . Changing the sign of any of the correlations

while keeping their absolute value fixed has simple (anti-)symmetric effects just on the

sign of the estimation errors. Therefore we shall mostly just investigate nonnegative

values for ρxu, ρzjx and ρzju.

For the TSLS residuals we find

ûTSLS = y − β̂TSLSx = u− x′Z(Z ′Z)−1Z ′u

x′Z(Z ′Z)−1Z ′x
x = u− x′PZu

x′PZx
x, (B.15)

and for the Sargan test statistic

S = n
û′TSLSZ(Z ′Z)−1Z ′ûTSLS

û′TSLSûTSLS

= n
u′PZu− (x′PZu)2

x′PZx

u′u− 2u′xx
′PZu
x′PZx

+ x′x (x
′PZu)2

(x′PZx)2

= n
u′PZu(x′PZx)2 − (x′PZu)2x′PZx

u′u(x′PZx)2 − 2u′x(x′PZu)x′PZx+ x′x(x′PZu)2
. (B.16)

It is obvious that this is invariant with respect to β and to all scale factors, because all

individual terms, both in the numerator and in the denominator, are multiples of σ2uσ
4
x.
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It is well known that the Sargan test is equivalent to literally testing over-identification

exclusion restrictions. In the present design, this amounts to estimating the model

yi = βxi + δzij + ui, where j is either 1 or 2, using both instruments, and next testing

the significance of δ. One easily finds that the probability limit of the estimator for δ is

a multiple of ρz1xρz2u − ρz2xρz1u, which is zero when

ρz1u/ρz1x = ρz2u/ρz2x. (B.17)

Indeed, when running simulations with parameter values obeying (B.17) with values of

ρz1u and ρz2u far away from zero, we always found rejection probabilities of the Sar-

gan test similar to the nominal significance level, with TSLS inference of course being

seriously corrupted.
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C. Coping with omitted variables by TSLS or KLS

We consider estimating the model

y = Xβ + u, (C.1)

as introduced in (4.1) and (4.2), where Xβ = X1β1 + X2β2, u = γ + ε, γ = X3β3 and

E(ε | X1, X2, X3) = 0. For an n×L instrument matrix Z and n×K matrix X, obeying

the conditions

rank(X) = K1 +K2 = K, rank(Z) = L and rank(Z ′X) = K ≤ L, (C.2)

the TSLS estimator

β̂TSLS = (X ′PZX)−1X ′PZy, where PZ = Z(Z ′Z)−1Z ′, (C.3)

exists. Under some further standard regularity conditions, including the moment condi-

tions

E[Z ′(γ + ε)] = 0, (C.4)

β̂TSLS is consistent for β = (β1, β2)
′.

Let X2 contain all the regressors of (C.1) that are being used as internal instruments.

Then Z = (Z1, X2), with Z1 containing L −K2 external instruments, which are not in

the space spanned by the columns of X. Now (C.2) requires

rank(Z ′1X1) = K1, (C.5)

and (C.4) specializes toE(Z ′1γ)+E(Z ′1ε) = 0 andE(X ′2γ)+E(X ′2ε) = 0.UsingE(X ′2ε) =

0, these moment conditions boil down to

E(Z ′1γ) + E(Z ′1ε) = 0 and E(X ′2γ) = 0. (C.6)

In theory the first condition of (C.6) could be satisfied by finding external instruments

Z1 such that E(Z ′1ε) = −E(Z ′1γ) 6= 0. However, realizing this in practice seems elusive,

whereas achieving (C.6) by pursuing validity of the suffi cient conditions

(i) E(Z ′1ε) = 0, (ii) E(Z ′1γ) = 0, and (iii) E(X ′2γ) = 0 (C.7)

may be feasible. Here condition (i) entails that the variables Z1 should be correctly

excluded from the theory model (4.1). Hence, external instruments Z1 should be chosen

14



such that they do not have a direct effect on y, but just an indirect effect (if β1 6= 0)

through their required association with X1, imposed by (C.5), which prevents under-

identification. Assuming (i) holds, condition (ii) is explicitly addressed by arguing or

testing that Z1 establishes valid external instruments for the empirical model (C.1),

requiring the variables in Z1 to be uncorrelated with ε and γ. Condition (iii) of (C.7)

is satisfied if the variables X2, which are uncorrelated with ε, are uncorrelated with γ

too, and thus are (like Z1) uncorrelated with the disturbances γ + ε of the empirical

model (C.1). Whether or not the instruments Z1 are correlated with the regressors X2

is irrelevant for the consistency of TSLS using instruments (Z1, X2), as long as such

correlations are not extreme and would jeopardize (C.2).

Conditions (ii) and (iii) may often be hard to fulfill. In the applications of Section 4,

Z1 may contain a variable such as presence of a college in the neighborhood or quarter

of birth. If these may be correlated with ability, for instance, because both Z1 and γ

depend on variables from X2, such as urban or race, then both requirements (ii) and

(iii) are at risk. However, such doubts to ascertain moment conditions (ii) and (iii) can

be mitigated if one is willing to focus on obtaining a consistent estimator for just the

direct effects β1 of X1, and give that up regarding β2, while supposing that suffi ciently

relevant control variables X2 have been included in the model.

When both (ii) and (iii) are not fulfilled simply because both γ and Z1 are correlated

with X2, then the situation can be characterized and tackled as follows. We define

γ∗ = γ −X2φ
∗
2, where E(γ | X2) = X2φ

∗
2, (C.8)

Z∗1 = Z1 −X2Ψ, where E(Z1 | X2) = X2Ψ, (C.9)

and suppose

E(Z∗′1 γ
∗) = 0. (C.10)

Now model (C.1) can be rewritten as

y = X1β1 +X2β
∗
2 + (γ∗ + ε), where β∗2 = β2 + φ∗2. (C.11)

Supposing (i) and (C.10) are fulfilled yields the orthogonality conditions

E[Z ′1(γ
∗ + ε)] = E(Z∗1γ

∗) + Ψ′E(X ′2γ
∗) = Ψ′E[X ′2E(γ∗ | X2)] = 0, (C.12)

E[X ′2(γ
∗ + ε)] = E{E[X ′2(γ −X2φ

∗
2) | X2]} = E(X ′2X2φ

∗
2 −X ′2X2φ

∗
2) = 0, (C.13)

so that estimating model (C.11) by TSLS using the instruments (Z1, X2) delivers con-

sistent estimators of β1 and β∗2 .
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The above analysis highlights that as a rule instrument matrix Z should not contain

the variables from X for which one wants to assess exclusively their direct effect on y in

isolation from any indirect effects they may have on y through omitted regressors. These

variables are collected in X1. The remaining regressors from X, the variables X2, can be

used as internal instruments, but their estimated coeffi cients will represent both their

direct effect and any indirect effect they may have via the omitted variables X3. For

identification of β1 and β∗2 one needs at least as many external instruments Z1 as there

are variables in X1. These external instruments Z1 should meet three criteria. Two with

respect to their validity, which can be formulated as: (a) Z1 should have no direct causal

effect on y; and (b), after removing from Z1 and from omitted component γ any linear

association with X2, they should be mutually uncorrelated. In addition, Z1 should meet

a third criterion, namely regarding relevance, being: (c) matrix Z ′1(I − PX2)X1 should

be such that the external instruments Z1 are suffi ciently strong, in the sense that the

correlations of the variables in Z1 with those of X1, after netting out their relation with

X2, should not be small.

From the above it follows that an investigator may choose how many and which

of the regressors (s)he is willing to consider as exogenous and let slip the ambition

to consistently estimate their direct effect. Provided valid external instruments will

be found the direct effect of the remaining endogenous regressors can be estimated

consistently. In principle, one may even choose to estimate the direct effect of various

of the regressors X one by one, treating each of them as the one and only endogenous

regressor in a series of regressions.

Likewise, in the instrument-free approach, one may choose to analyze a series of

models in which the regressor matrix X of model (C.1) is partitioned in a different way

into endogenous and exogenous regressors. This partition of X determines which of the

elements of ρxu can simply be set at zero, and for which credible numerical (interval)

assumptions have to be made. Of course, the other crucial issues in a TSLS context,

indicated in the previous paragraph by (a), (b) and (c), are irrelevant for an instrument-

free approach. When avoiding assumptions on instruments, these have to be replaced

by an assumption on credible numerical values of ρx(1)u, which is associated with the

covariance E(X ′1u) = E(X ′1γ
∗). The jth element of ρx(1)u can be obtained by dividing

the corresponding element of E(X ′1u) by nσuσj, where σj is the standard deviation of

the jth regressor in X1.
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