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A Methods and formulas

In this online Appendix, I formulate the log-likelihood functions for the short-T dynamic random-

effects and dynamic fixed-effects models discussed in Section 2 of the main paper. The log-likelihood

functions can be maximized with a gradient-based optimization technique. For such an iterative

optimization procedure, appropriate starting values are needed, and I outline how they are ob-

tained. Large computational gains are achieved by using the analytical first-order and second-order

derivatives provided further below.1 All results are obtained for unbalanced panel data.

A.1 Random-effects model

A.1.1 Log-likelihood function

For the sake of clarity, let me restate the model and initial-observations equations (1) and (2):

yit = λyi,t−1 + x′itβ + f ′iγ + εit, εit = ui + eit, (A.1)

∗Kripfganz, S. (2016). Quasi-maximum likelihood estimation of linear dynamic short-T panel-data models. Stata
Journal 16 (4), 1013–1038.

1By specifying the appropriate option, the xtdpdqml command allows the log-likelihood function to be evaluated
without analytical derivatives, method(d0), with first-order derivatives only, method(d1), or with both first-order
and second-order derivatives, method(d2). The last one is fastest and used by default. Supported maximization al-
gorithms are Stata’s modified Newton-Raphson algorithm, technique(nr), the Davidson-Fletcher-Powell algorithm,
technique(dfp), the Broyden-Fletcher-Goldfarb-Shanno algorithm, technique(bfgs), and combinations of them.
See Gould et al. (2010) for details. Further options for controlling the optimization procedure are available. See
Section 3.2 of the main paper for a complete list.
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defined for consecutive time periods t = 1, 2, . . . , Ti, and

yi0 =

T∗∑
s=0

x′isπx,s + f ′iπf + νi0, (A.2)

where T ∗ = min(Ti). A constant term is included in the set of time-invariant regressors fi.
2 To

simplify the notation, let wit = (yi,t−1,x
′
it, f
′
i)
′ with the corresponding vector of model coefficients

δ = (λ,β′,γ′)′, and zi = (x′i0,x
′
i1, . . . ,x

′
iT∗ , f

′
i)
′ with the corresponding initial-observations coef-

ficients π = (π′x,0,π
′
x,1, . . . ,π

′
x,T∗ ,π

′
f )′. Following Bhargava and Sargan (1983) and Hsiao et al.

(2002), and treating ui and eit as i.i.d normally distributed with mean zero and variance σ2
u and σ2

e ,

respectively,3 we can formulate the resulting log-likelihood function as a function of the parameter

vector ψ0 = (δ′,π′, σ2
u, σ

2
e , σ

2
0 , φ)′:4

lnL0 = −N
2

ln
(
2πσ2

0

)
− 1

2

N∑
i=1

[
Ti ln

(
2πσ2

e

)
+ ln(1 + ρTi) +

1

σ2
0

ν2
i0

+
1

σ2
e

Ti∑
t=1

(εit − φνi0)2 − ρ

σ2
e(1 + ρTi)

(
Ti∑
t=1

(εit − φνi0)

)2]
, (A.3)

with ρ = (σ2
u − φ2σ2

0)/σ2
e .

In Section 2.1 of the main paper, we obtained the same representation (A.2) for the initial

observations under a stationarity assumption, in particular |λ| < 1 with an initialization in the

infinite past, if the model includes time-varying exogenous regressors, although with a restriction

on the covariance structure, namely Cov(νi0, εit) = Cov(νi0, ui) = φσ2
0 = σ2

u/(1 − λ). If this

restriction is true, it is efficient to substitute it into the log-likelihood function and to maximize

it only with respect to the remaining parameters ψ1 = (δ′,π′, σ2
u, σ

2
e , σ

2
0)′. The new log-likelihood

function is a nested version of the unrestricted log-likelihood function (A.3):5

lnL1 = lnL0

(
φ =

σ2
u

(1− λ)σ2
0

)
. (A.4)

2If the constant is suppressed by the option noconstant, the xtdpdqml command still includes an intercept in the
marginal distribution of the initial observations unless the option stationary is specified in addition to noconstant.

3The mean zero assumption is without loss of generality since we include a constant term in the set of time-
invariant variables fi.

4lnL0 is used as a shorthand notation for lnLT1,T2,...,TN (y|X,F;ψ0), where boldface letters without subscript
refer to the combined observations for all units i = 1, 2, . . . , N .

5With the xtdpdqml command, this restriction is enforced by specifying the option stationary. However, the
underlying assumption |λ| < 1 is not enforced which could lead to contradictory results.
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The random-effects model under the stationarity assumption but without time-varying regres-

sors implied further parameter restrictions that yield another constrained log-likelihood function:6

lnL2 = lnL1

(
π =

1

1− λ
γ, σ2

0 =
σ2
u

(1− λ)2
+

σ2
e

1− λ2

)
= lnL0

(
π =

1

1− λ
γ, σ2

0 =
σ2
u

(1− λ)2
+

σ2
e

1− λ2
, φ =

σ2
u

(1− λ)σ2
0

)
, (A.5)

which can be maximized with respect to the parameters ψ2 = (δ′, σ2
u, σ

2
e)′.

A.1.2 Starting values

For the model coefficients δ, starting values for the iterative optimization procedure can be obtained

inter alia from an initial consistent GMM estimator.7 Initial estimates for the variance parameters

σ2
u and σ2

e are obtained as follows:

σ̂2
ε =

1∑N
i=1 Ti

N∑
i=1

Ti∑
t=1

ε̂2it,

σ̂2
u =

1∑N
i=1 Ti(Ti − 1)/2

N∑
i=1

Ti−1∑
t=1

Ti∑
s=t+1

ε̂itε̂is,

σ̂2
e = σ̂2

ε − σ̂2
u,

with ε̂it = yit − w′itδ̂, given the initial estimates δ̂. Unless stationarity restrictions are imposed,

for the initial-observations variance parameter σ2
0 we start with

σ̂2
0 =

1

N

N∑
i=1

ν̂2
i0,

with ν̂i0 = yi0 − z′iπ̂, and where π̂ are OLS estimates for the initial-observations equation (A.2).

Finally,

φ̂ =
1

σ̂2
0

∑N
i=1 Ti

N∑
i=1

ν̂i0

Ti∑
t=1

ε̂it.

6Again, the option stationary imposes these restrictions when using the xtdpdqml command.
7By default, xtdpdqml obtains starting values from Stata’s xtdpd command with GMM-type instruments for the

lagged dependent variable, as proposed by Arellano and Bond (1991), and standard instruments for the strictly
exogenous regressors in the first-differenced equation. Standard instruments for time-invariant regressors are added
to the level equation, as suggested by Arellano and Bover (1995). These initial estimation results can be stored and
recovered with the storeinit() option. Alternative starting values can be provided with the from() option.
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The starting values could be infeasible if the argument of ln(1+ρTi) evaluates to a negative number.

If that is the case, appropriate starting values should be specified for the variance parameters such

that (σ2
u − φ2σ2

0)T > −σ2
e , where T = max(Ti).

8

A.1.3 First-order derivatives

To economize on space, let me further introduce the shorthand notation ε̈it = εit−φνi0. For the un-

restricted random-effects model with time-varying exogenous regressors, the first-order conditions

are obtained by setting the following derivatives equal to zero:

∂ lnL0

∂δ
=

1

σ2
e

N∑
i=1

[
Ti∑
t=1

witε̈it −
ρ

1 + ρTi

(
Ti∑
t=1

wit

)(
Ti∑
t=1

ε̈it

)]
,

∂ lnL0

∂π
=

N∑
i=1

zi

[
1

σ2
0

νi0 −
φ

σ2
e(1 + ρTi)

Ti∑
t=1

ε̈it

]
,

∂ lnL0

∂σ2
u

=
1

2σ2
e

N∑
i=1

1

1 + ρTi

[
−Ti +

1

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,

∂ lnL0

∂σ2
e

=
1

2σ2
e

N∑
i=1

[
− [1 + ρ(Ti − 1)]Ti

1 + ρTi
+

1

σ2
e

Ti∑
t=1

ε̈2it −
ρ(2 + ρTi)

σ2
e(1 + ρTi)2

(
Ti∑
t=1

ε̈it

)2]
,

∂ lnL0

∂σ2
0

= − N

2σ2
0

+
1

2

N∑
i=1

[
φ2Ti

σ2
e(1 + ρTi)

+
1

σ4
0

ν2
i0 −

(
φ

σ2
e(1 + ρTi)

)2
(

Ti∑
t=1

ε̈it

)2]
,

∂ lnL0

∂φ
=

1

σ2
e

N∑
i=1

1

1 + ρTi

[
φσ2

0Ti + νi0

Ti∑
t=1

ε̈it −
φσ2

0

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
.

Under the enforced restriction φ = σ2
u/[(1− λ)σ2

0 ], the adjusted first-order derivatives are

∂ lnL1

∂ψ1

=
∂ lnL0

∂ψ1

+

(
∂ lnL0

∂φ

)(
∂φ

∂ψ1

)
,

where

∂φ

∂λ
=

φ

1− λ
,

∂φ

∂σ2
u

=
φ

σ2
u

,
∂φ

∂σ2
0

= − φ

σ2
0

,

and the partial derivatives of φ with respect to all other parameters being zero.

8Alternative starting values for σ2
u, σ2

e , σ2
0 , and φ can be specified directly with the initval() option of the

xtdpdqml command.
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The first-order conditions for the random-effects model without time-varying exogenous regres-

sors and with the parameter restrictions π = πf = γ/(1−λ), σ2
0 = σ2

u/(1−λ)2 +σ2
e/(1−λ2), and

φ = σ2
u/[(1− λ)σ2

0 ] are

∂ lnL2

∂ψ2

=
∂ lnL1

∂ψ2

+

(
∂π′

∂ψ2

)(
∂ lnL1

∂π

)
+

(
∂ lnL1

∂σ2
0

)(
∂σ2

0

∂ψ2

)
,

where

∂π′

∂λ
=

1

(1− λ)2
γ′,

∂π′

∂γ
=

1

1− λ
IKf

,
∂π′

∂σ2
u

= 0′,
∂π′

∂σ2
e

= 0′,
∂σ2

0

∂γ
= 0,

∂σ2
0

∂λ
=

2

(1− λ)2

(
σ2
u

1− λ
+

λσ2
e

(1 + λ)2

)
,

∂σ2
0

∂σ2
u

=
1

(1− λ)2
,

∂σ2
0

∂σ2
e

=
1

1− λ2
.

A.1.4 Second-order derivatives

For the unrestricted case, the resulting second-order derivatives are

∂2 lnL0

∂δ∂δ′
= − 1

σ2
e

N∑
i=1

[
Ti∑
t=1

witw
′
it −

ρ

1 + ρTi

(
Ti∑
t=1

wit

)(
Ti∑
t=1

wit

)′]
,

∂2 lnL0

∂π∂π′
= −

N∑
i=1

(
1

σ2
0

+
φ2Ti

σ2
e(1 + ρTi)

)
ziz
′
i,

∂2 lnL0

∂(σ2
u)2

=
1

σ4
e

N∑
i=1

Ti
(1 + ρTi)2

[
Ti
2
− 1

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,

∂2 lnL0

∂(σ2
e)2

= − 1

2σ4
e

N∑
i=1

[
ρTi

(1 + ρTi)2
+

1

σ2
e

Ti∑
t=1

ε̈2it −
ρ[4 + ρTi(3 + ρTi)]

σ2
e(1 + ρTi)3

(
Ti∑
t=1

ε̈it

)2]
,

∂2 lnL0

∂(σ2
0)2

=
N

2σ4
0

+

N∑
i=1

[
1

2

(
φ2Ti

σ2
e(1 + ρTi)

)2

− 1

σ6
0

ν2
i0 −

φ4Ti
σ6
e(1 + ρTi)3

(
Ti∑
t=1

ε̈it

)2]
,

and

∂2 lnL0

∂φ2
=

1

σ2
e

N∑
i=1

1

1 + ρTi

[
σ2

0Ti

(
1 +

2φ2σ2
0Ti

σ2
e(1 + ρTi)

)
− Tiν2

i0 +
4φσ2

0Ti
σ4
e(1 + ρTi)2

νi0

Ti∑
t=1

ε̈it

− σ2
0

σ2
e(1 + ρTi)

(
1 +

4φ2σ2
0Ti

σ2
e(1 + ρTi)

)( Ti∑
t=1

ε̈it

)2]
,
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with the mixed derivatives

∂2 lnL0

∂δ∂π′
=

1

σ2
e

N∑
i=1

φ

1 + ρTi

(
Ti∑
t=1

wit

)
z′i,

∂2 lnL0

∂δ∂σ2
u

= − 1

σ4
e

N∑
i=1

1

(1 + ρTi)2

(
Ti∑
t=1

wit

)(
Ti∑
t=1

ε̈it

)
,

∂2 lnL0

∂δ∂σ2
e

= − 1

σ4
e

N∑
i=1

[
Ti∑
t=1

witε̈it −
ρ(2 + ρTi)

(1 + ρTi)2

(
Ti∑
t=1

wit

)(
Ti∑
t=1

ε̈it

)]
,

∂2 lnL0

∂δ∂σ2
0

=
1

σ4
e

N∑
i=1

φ2

(1 + ρTi)2

(
Ti∑
t=1

wit

)(
Ti∑
t=1

ε̈it

)
,

∂2 lnL0

∂δ∂φ
= − 1

σ2
e

N∑
i=1

1

1 + ρTi

(
Ti∑
t=1

wit

)[
νi0 −

2φσ2
0

σ2
e(1 + ρTi)

Ti∑
t=1

ε̈it

]
,

∂2 lnL0

∂π∂σ2
u

=
1

σ4
e

N∑
i=1

φTi
(1 + ρTi)2

zi

Ti∑
t=1

ε̈it,

∂2 lnL0

∂π∂σ2
e

=
1

σ4
e

N∑
i=1

φ

(1 + ρTi)2
zi

Ti∑
t=1

ε̈it,

∂2 lnL0

∂π∂σ2
0

= −
N∑
i=1

zi

[
1

σ4
0

νi0 +
φ3Ti

σ4
e(1 + ρTi)2

Ti∑
t=1

ε̈it

]
,

∂2 lnL0

∂π∂φ
=

1

σ2
e

N∑
i=1

1

1 + ρTi
zi

[
φTiνi0 −

(
1 +

2φ2σ2
0Ti

σ2
e(1 + ρTi)

) Ti∑
t=1

ε̈it

]
,

∂2 lnL0

∂σ2
u∂σ

2
e

=
1

σ4
e

N∑
i=1

1

(1 + ρTi)2

[
Ti
2
− 1

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,

∂2 lnL0

∂σ2
u∂σ

2
0

= − 1

σ4
e

N∑
i=1

φ2Ti
(1 + ρTi)2

[
Ti
2
− 1

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,

∂2 lnL0

∂σ2
u∂φ

= − 1

σ4
e

N∑
i=1

Ti
(1 + ρTi)2

[
φσ2

0Ti + νi0

Ti∑
t=1

ε̈it −
2φσ2

0

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,

∂2 lnL0

∂σ2
e∂σ

2
0

= − 1

σ4
e

Ti∑
i=1

φ2

(1 + ρTi)2

[
Ti
2
− 1

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,

∂2 lnL0

∂σ2
e∂φ

= − 1

σ4
e

Ti∑
t=1

1

(1 + ρTi)2

[
φσ2

0Ti + νi0

Ti∑
t=1

ε̈it −
2φσ2

0

σ2
e(1 + ρTi)

(
Ti∑
t=1

ε̈it

)2]
,
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∂2 lnL0

∂σ2
0∂φ

=
1

σ2
e

N∑
i=1

φ

1 + ρTi

[
Ti

(
1 +

φ2σ2
0Ti

σ2
e(1 + ρTi)

)
+

φTi
σ2
e(1 + ρTi)

νi0

Ti∑
t=1

ε̈it

− 1

σ2
e(1 + ρTi)

(
1 +

2φ2σ2
0Ti

σ2
e(1 + ρTi)

)( Ti∑
t=1

ε̈it

)2]
.

In the restricted case with time-varying exogenous regressors, the second-order derivatives are

∂2 lnL1

∂ψ1∂ψ
′
1

=
∂2 lnL0

∂ψ1∂ψ
′
1

+

(
∂2 lnL0

∂ψ1∂φ

)(
∂φ

∂ψ1

)′
+

(
∂φ

∂ψ1

)(
∂2 lnL0

∂ψ1∂φ

)′
+

(
∂2 lnL0

∂φ2

)(
∂φ

∂ψ1

)(
∂φ

∂ψ1

)′
+

(
∂ lnL0

∂φ

)(
∂2φ

∂ψ1∂ψ
′
1

)
,

where

∂2φ

∂λ2
=

2φ

(1− λ)2
,

∂2φ

∂(σ2
u)2

= 0,
∂2φ

∂(σ2
0)2

=
2φ

σ4
0

,

∂2φ

∂λ∂σ2
u

=
φ

(1− λ)σ2
u

,
∂2φ

∂λ∂σ2
0

= − φ

(1− λ)σ2
0

,
∂2φ

∂σ2
u∂σ

2
0

= − φ

σ2
uσ

2
0

,

and all other elements of ∂2φ/(∂ψ1∂ψ
′
1) being zero.

Without time-varying regressors, the restricted second-order derivatives become

∂2 lnL2

∂ψ2∂ψ
′
2

=
∂2 lnL1

∂ψ2∂ψ
′
2

+

(
∂2 lnL1

∂ψ2∂θ
′

)(
∂θ′

∂ψ2

)′
+

(
∂θ′

∂ψ2

)(
∂2 lnL1

∂ψ2∂θ
′

)′

+

(
∂θ′

∂ψ2

)(
∂2 lnL1

∂θ∂θ′

)(
∂θ′

∂ψ2

)′
+

[(
∂ lnL1

∂θ

)′
⊗ IKf+3

]∂vec
(
∂θ′

∂ψ2

)
∂ψ′2

 ,
where θ = (π′, σ2

0)′ and ⊗ denotes the Kronecker product. The elements of the last term,

∂vec(∂θ′/∂ψ2)/∂ψ′2, are

∂2πk
∂λ2

=
2γk

(1− λ)3
,

∂2πk
∂λ∂γk

=
1

(1− λ)2
, k = 1, 2, . . . ,Kf ,

∂2σ2
0

∂λ∂σ2
u

=
2

(1− λ)3
,

∂2σ2
0

∂λ∂σ2
e

=
2λ

(1− λ2)2
,

∂2σ2
0

∂λ2
=

2

(1− λ)2

[
3σ2

u

(1− λ)2
+

σ2
e

(1 + λ)2

(
1 +

4λ2

1− λ2

)]
,

and all other elements being zero.
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A.2 Fixed-effects model

A.2.1 Log-likelihood function

Recall the transformed fixed-effects model (4) and the corresponding unrestricted representation

of the first-differenced initial observations (5) from Section 2.2 of the main paper:9

∆yit = λ∆yi,t−1 + ∆x′itβ + ∆eit, (A.6)

defined for consecutive time periods t = 2, 3, . . . , Ti, and

∆yi1 = b+

T∗∑
s=1

∆x′isπs + νi1, (A.7)

where again T ∗ = min(Ti). Define π = (b,π′1,π
′
2, . . . ,π

′
T∗)
′. The vector of the model disturbances

for all time periods can be written as ∆e∗i = ∆yi −∆W∗
iϕ, where ϕ = (π′, λ,β′)′ and ∆W∗

i =

(∆Z∗i ,∆y∗i,−1,∆X∗i ), with

∆Z∗i =

1 ∆x′i1 ∆x′i2 . . . ∆x′iTi

0 0 0 . . . 0

 ,

∆X∗i = (0,∆xi2, . . . ,∆xiT )′, and ∆y∗i,−1 = (0,∆yi1, . . . ,∆yi,Ti−1)′. The covariance matrix of the

joint disturbances ∆e∗i = (νi1,∆ei2, . . . ,∆eiTi
)′ is given by

Ωi = σ2
e



ω −1 0 · · · 0

−1 2 −1

0 −1 2

...
. . . −1

0 −1 2


= σ2

eΩ∗i .

9In the fixed-effects model, all time-invariant exogenous variables are dropped due to the first-difference trans-
formation. Yet, unless either of the options noconstant or mlparams is specified, xtdpdqml still reports a constant
term for the untransformed model. It is obtained with the two-stage approach proposed by Kripfganz and Schwarz
(2015). The first-stage residuals, yit− λ̂yi,t−1−x′itβ̂, are regressed on a constant term, and the standard errors are
appropriately corrected to account for the first-stage estimation error.

8



Treating the idiosyncratic error terms eit as i.i.d. normally distributed,10 the resulting trans-

formed log-likelihood function as a function of the parameters ψ∆0 = (λ,β′,π′, σ2
e , ω) is11

lnL∆0 = −1

2

N∑
i=1

[
Ti ln

(
2πσ2

e

)
+ ln |Ω∗i |+

1

σ2
e

∆e∗i
′(Ω∗i )

−1∆e∗i

]
. (A.8)

Hsiao et al. (2002, Appendix B) provide an analytical expression for the determinant, |Ω∗i | =

1 + Ti(ω − 1).

Assuming stationarity, in particular |λ| < 1 and that the process was initialized long before

the data is observed, we have obtained the restriction b = 0 in Section 2.2 of the main paper. If

the model does not contain time-varying exogenous regressors, the stationarity assumption further

implied the restriction ω = 2/(1 + λ). The log-likelihood function in the latter case becomes12

lnL∆1 = lnL∆0

(
π = 0, ω =

2

1 + λ

)
, (A.9)

which is only a function of the two parameters ψ∆1 = (λ, σ2
e).

By setting the first-order conditions of the unrestricted model for ϕ and σ2
e equal to zero (see

further below), we can obtain the following closed-form solutions as functions of ω:

ϕ̂ =

(
N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆W∗
i

)−1 N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆yi, (A.10)

σ̂2
e =

1∑N
i=1 Ti

N∑
i=1

(∆ê∗i )
′(Ω∗i )

−1∆ê∗i , (A.11)

with ∆ê∗i = (∆yi − ∆W∗
i ϕ̂).13 These solutions can be substituted into the unrestricted log-

likelihood function (A.8) to obtain a concentrated log-likelihood function in terms of the parameter

10As discussed by Hayakawa and Pesaran (2015), the subsequent arguments are sustained if eit is cross-sectionally
heteroskedastic with variance σ2

e,i. The parameter σ2
e can then be treated as an average variance and the QML

method still yields consistent coefficient estimates. Corresponding robust standard errors are readily obtained with
the sandwich formula, in Stata by specifying the option vce(robust).

11lnL∆0 is shorthand notation for lnLT1,T2,...,TN (∆y|∆X;ψ∆0).
12With the xtdpdqml command this linear constraint can be enforced by specifying the option stationary. Note

again that the assumption |λ| < 1 is not enforced.
13Compare again with Hsiao et al. (2002, Appendix B) for the balanced case.
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ω only:14

lnL∆c = −1

2

N∑
i=1

[
Ti
(
ln(2πσ̂2

e) + 1
)

+ ln |Ω∗i |
]
, (A.12)

with σ̂2
e substituted by equation (A.11) and therein ϕ̂ substituted by equation (A.10).

A.2.2 Starting values

Given initial consistent estimates λ̂ and β̂,15 an initial estimate for σ2
e is obtained as

σ̂2
e =

1

2
∑N
i=1(Ti − 1)

N∑
i=1

Ti∑
t=2

(∆yit − λ̂∆yi,t−1 −∆x′itβ̂)2.

Following Hsiao et al. (2002), starting values for the auxiliary parameters π are obtained from an

OLS estimation of the respective initial-observations equation. An initial estimate for ω, given the

estimates λ̂, β̂, π̂, and σ̂2
e , is computed as

ω̂ =
T − 1

T
+

1

σ̂2
eN

N∑
i=1

1

T 2
i

(∆ê∗i )
′ϑiϑ

′
i∆ê∗i , (A.13)

with ϑi = (Ti, Ti − 1, . . . , 1)′ and T = max(Ti). When the panel data set is balanced, that is

Ti = T for all i, equation (A.13) constitutes the closed-form solution for ω obtained by setting its

first-order condition equal to zero. In the unbalanced case, such a closed-form solution for ω does

not exist, but the choice T = max(Ti) in equation (A.13) guarantees that ln |Ω∗i | is well defined for

all i.16

We can further refine the starting values in the model with exogenous regressors by using an it-

erative procedure. Inserting the initial value for ω into the closed-form solutions (A.10) and (A.11)

for the parameters ϕ = (π′, λ,β′)′ and σ2
e , respectively, yields the minimum distance estimator

proposed by Hsiao et al. (2002). These estimates can again be plugged into the closed-form solution

(A.13) for ω with subsequent updates of the minimum distance estimator. With balanced panel

data, this process eventually yields the maximum likelihood estimates if it is repeated until con-

14With the xtdpdqml command, the option concentration can be used to maximize this concentrated function.
15When using the xtdpdqml command, these starting values can be either specified with the from() option or are

obtained by default as GMM estimates in the same way as explained for the random-effects model above (without
time-invariant regressors).

16Alternative starting values for σ2
e and ω can be supplied directly to xtdpdqml with the initval() option. To

be feasible, the starting value for ω needs to exceed (T − 1)/T to guarantee that the determinant of Ω∗i is positive.
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vergence but switching to one of the gradient-based optimization algorithms after a few iterations

is much faster.17

A.2.3 First-order derivatives

Hsiao et al. (2002, Appendix B) provide the first-order and second-order derivatives of the trans-

formed log-likelihood function for the fixed-effects model with exogenous regressors and balanced

panel data. Here, they are adjusted for the unbalanced case. The first-order derivatives of the

log-likelihood function (A.8) are

∂ lnL∆0

∂ϕ
=

1

σ2
e

N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆e∗i ,

∂ lnL∆0

∂σ2
e

=
1

2σ2
e

N∑
i=1

[
−Ti +

1

σ2
e

∆e∗i
′(Ω∗i )

−1∆e∗i

]
,

∂ lnL∆0

∂ω
=

1

2

N∑
i=1

[
− Ti

1 + Ti(ω − 1)
+

1

σ2
e

∆ẽ′i∆ẽi

]
,

with ∆ẽi = Λi(Ω
∗
i )
−1∆e∗i , where Λi = ∂Ω∗i /∂ω is an idempotent and symmetric Ti × Ti matrix

with unity as the first element and all other elements being zero.18 An analytical expression for

(Ω∗i )
−1 is obtained by Hsiao et al. (2002, Appendix B). Its (k, l)-th element can be constructed as:

(Ω∗i )
−1

[k,l] =
[Ti −max(k, l) + 1][(ω − 1) min(k, l)− ω + 2]

1 + Ti(ω − 1)
.

The first-order derivatives of the log-likelihood function (A.9) without time-varying regressors

and with the stationarity restrictions b = 0 and ω = 2/(1 + λ) are as follows:

∂ lnL∆1

∂λ
=

N∑
i=1

[
Ti

(1 + λ)[1 + λ+ Ti(1− λ)]
− 1

(1 + λ)2σ2
e

∆ẽ′i∆ẽi +
1

σ2
e

∆y∗i,−1
′(Ω∗i )

−1∆e∗i

]
,

∂ lnL∆1

∂σ2
e

=
1

2σ2
e

N∑
i=1

[
−Ti +

1

σ2
e

∆e∗i
′(Ω∗i )

−1∆e∗i

]
.

17xtdpdqml allows the number of initial iteration steps to be specified with the inititer(#) option. Anderson
and Hsiao (1982) propose a similar iterative procedure in the context of a dynamic random-effects model with fixed
initial observations.

18Compare Hsiao et al. (2002, Section 5) for balanced panels and notice that ∂(Ω∗i )−1/∂ω = −(Ω∗i )−1Λi(Ω
∗
i )−1 =

−|Ω∗i |−2ϑiϑ
′
i with ϑi = (Ti, Ti − 1, . . . , 1)′ and |Ω∗i | = 1 + Ti(ω − 1).
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For the concentrated log-likelihood function (A.12), there is only a single first-order condition:

∂ lnL∆c

∂ω
=

1

2

N∑
i=1

1

1 + Ti(ω − 1)

[
−Ti +

1

σ̂2
e [1 + Ti(ω − 1)]

(∆ê∗i )
′ϑiϑ

′
i∆ê∗i

]
,

A.2.4 Second-order derivatives

The second-order derivatives are obtained as

∂2 lnL∆0

∂ϕ∂ϕ′
= − 1

σ2
e

N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆W∗
i ,

∂2 lnL∆0

∂(σ2
e)2

=
1

σ4
e

N∑
i=1

[
Ti
2
− 1

σ2
e

∆e∗i
′(Ω∗i )

−1∆e∗i

]
,

∂2 lnL∆0

∂ω2
=

N∑
i=1

[
T 2
i

2[1 + Ti(ω − 1)]2
− 1

σ2
e

∆˜̃e′i∆ẽi

]
,

∂2 lnL∆0

∂ϕ∂σ2
e

= − 1

σ4
e

N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆e∗i ,

∂2 lnL∆0

∂ϕ∂ω
= − 1

σ2
e

N∑
i=1

∆W̃′
i∆ẽi,

∂2 lnL∆0

∂σ2
e∂ω

= − 1

2σ4
e

N∑
i=1

∆ẽ′i∆ẽi,

with ∆W̃i = Λi(Ω
∗
i )
−1∆W∗

i and ∆˜̃ei = Λi(Ω
∗
i )
−1∆ẽi.

In the restricted case, the second-order derivatives turn out to be

∂2 lnL∆1

∂λ2
=

N∑
i=1

[
2Ti[(Ti − 1)λ− 1]

(1 + λ)2[1 + λ+ Ti(1− λ)]2
+

2

(1 + λ)3σ2
e

∆ẽ′i∆ẽi

− 4

(1 + λ)4σ2
e

∆˜̃e′i∆ẽi +
4

(1 + λ)2σ2
e

∆ỹ′i,−1∆ẽi −
1

σ2
e

∆y∗i,−1
′(Ω∗i )

−1∆y∗i,−1

]
,

and

∂2 lnL∆1

∂(σ2
e)2

=
1

σ4
e

N∑
i=1

[
Ti
2
− 1

σ2
e

∆e∗i
′(Ω∗i )

−1∆e∗i

]
,

∂2 lnL∆1

∂λ∂σ2
e

=
1

σ4
e

N∑
i=1

[
1

(1 + λ)2
∆ẽ′i∆ẽi −∆y∗i,−1

′(Ω∗i )
−1∆e∗i

]
,
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with ∆ỹi,−1 = Λi(Ω
∗
i )
−1∆y∗i,−1.

The second-order derivative for the concentrated log-likelihood function (A.12) is

∂2 lnL∆c

∂ω2
=

N∑
i=1

Ti
[1 + Ti(ω − 1)]2

[
Ti
2
− 1

σ̂2
e [1 + Ti(ω − 1)]

(∆ê∗i )
′ϑiϑ

′
i∆ê∗i

]

+
1

σ̂2
e

(
N∑
i=1

1

[1 + Ti(ω − 1)]2
∆W∗

iϑiϑ
′
i∆ê∗i

)(
N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆W∗
i

)−1

×

[(
N∑
i=1

1

[1 + Ti(ω − 1)]2
∆W∗

iϑiϑ
′
i∆yi

)
−

(
N∑
i=1

1

[1 + Ti(ω − 1)]2
∆W∗

iϑiϑ
′
i∆W∗

i

)

×

(
N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆W∗
i

)−1( N∑
i=1

∆W∗
i
′(Ω∗i )

−1∆yi

)]
,

where again ϕ̂ and σ̂2
e are functions of ω as in equations (A.10) and (A.11), respectively.
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