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Abstract

Panel data sets allow to account for unobserved unit-specific heterogeneity, as well as

time-series and cross-sectional dependence. I derive the unconditional transformed likelihood

function and its derivatives for a fixed-effects panel data model with time lags, spatial lags, and

spatial time lags that encompasses the pure time dynamic and pure space dynamic models as

special cases. In addition, the model can accommodate spatial dependence in the error term.

Consistent estimation in short panels requires proper allowance for the influence of the initial

observations. I demonstrate that the model-consistent representation of the initial-period

distribution involves higher-order spatial lag polynomials. Their order is linked to the minimal

polynomial of the spatial weights matrix and, in general, tends to infinity with increasing

sample size. An appropriate truncation of these lag polynomials becomes necessary unless

the spatial weights matrix has a regular structure. The finite-sample evidence from Monte

Carlo simulations shows that the proposed estimator performs well in comparison to a bias-

corrected conditional likelihood estimator if parameter proliferation is kept under control. As

an application, I use data from the Panel Study of Income Dynamics to estimate a time-space

dynamic wage equation that I derive from a bargaining model. I find significant spillover effects

among household members that give rise to a positive cohabitation premium. Furthermore,

the theoretical bargaining model justifies a particular nonlinear restriction on the spatial time

lag that simplifies the analytical derivations considerably and is also empirically supported.
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1 Introduction

The availability of panel data sets that consist of observations for several economic units over

multiple consecutive time periods allows to analyze dynamic adjustment processes over time and

spillover effects across units, and to control for various forms of heterogeneity. Modeling cross-

sectional dependence has a long-standing tradition in urban and regional economics where cross-

sectional units have a fixed location in space. Neighboring cities, districts, regions, or countries

are interconnected on various grounds due to migration, trade, technological spillovers, financial

links, economic specialization, and fiscal competition. Spatial statistics and econometrics provide

the methodological tools for the analysis of such regional dependencies.1 In recent years, these

methods became popular for the analysis of a wide range of economic applications far beyond

regional science, including the analysis of financial and social networks. As an example, Bramoullé

et al. (2009) discuss the identification of peer effects with spatial econometric methods.

Empirical studies that account both for cross-sectional spillover effects and time-series persis-

tence are still relatively rare, and most of them are located in the regional economics literature.

Examples include the estimation of economic growth models in the context of regional convergence

(Parent and LeSage, 2012; Yu and Lee, 2012; Ho et al., 2013; Evans and Kim, 2014; Fischer and

LeSage, 2015), the analysis of trade patterns (Keller and Shiue, 2007), testing for spatial cointe-

gration in financial liberalization of neighboring countries (Elhorst et al., 2013), and an analysis of

the evolution of state-level commuting times (Parent and LeSage, 2010). Despite their dominance,

potential applications are not restricted to macroeconomics. In a recent microeconomic study,

Verhelst and Van den Poel (2014) assess internal and external habit formation in consumption. In

the current paper, I estimate a dynamic wage equation that is motivated by the observation that

wages tend to be persistent over time and correlated among cohabiting workers.

Limitations to the analysis of dynamic panel data models emerge in small samples with only

a few observations over time. The current paper focuses on panel data models with a short time

dimension and a sufficiently large number of units. Following the terminology of Anselin (2001),

I consider a time-space dynamic panel data model that allows for pure time lags, contemporane-

ous spatial lags, and spatial time lags of both the dependent variable and exogenous regressors.

1See Anselin (1988), Anselin and Bera (1998), and LeSage and Pace (2009) for a comprehensive overview.
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Elhorst (2001) labels this model a general serial and spatial autoregressive distributed lag model

and discusses the variety of special cases that result under different parameter restrictions. The

unconditional transformed likelihood function derived in this paper encompasses the pure time dy-

namic and pure space dynamic models considered by Hsiao et al. (2002) and Lee and Yu (2010b),

respectively, as special cases. The paper therefore builds both on the literature on short-T dynamic

panel data models as well as the literature on spatial autoregressive models.

Linear panel data models with cross-sectional independence and autoregressive components

in the time dimension have been studied extensively. The usual way to account for unobserved

heterogeneity in these models is to incorporate unit-specific and time-specific effects. When the

time dimension is short, ordinary least squares and conditional maximum likelihood estimators

fail to deliver consistent estimates in dynamic models with fixed effects as a consequence of the

incidental-parameters problem discussed by Neyman and Scott (1948). Nickell (1981) characterizes

the resulting bias. Treating the unit-specific effects as random does not solve the problem due to

the nonnegligible impact of the initial observations. Over the past decades, several solutions have

been proposed. They include bias-corrected estimators (Kiviet, 1995; Hahn and Kuersteiner, 2002;

Bun and Carree, 2005; Dhaene and Jochmans, 2016), instrumental variable estimators (Anderson

and Hsiao, 1981), generalized method of moments (GMM) estimators (Arellano and Bond, 1991;

Ahn and Schmidt, 1995; Arellano and Bover, 1995; Blundell and Bond, 1998), and unconditional

likelihood-based estimators (Bhargava and Sargan, 1983; Hsiao et al., 2002; Binder et al., 2005;

Moral-Benito, 2013), to name only a few. In this paper, I extend the transformed likelihood

approach of Hsiao et al. (2002) to general time-space dynamic models, carefully modeling the

distribution of the initial observations.

The assumption of cross-sectional independence can be relaxed in various ways.2 An extensive

part of the literature puts the attention on properly accounting for cross-sectional error depen-

dence.3 I focus on models with cross-sectional dependence in the form of spatial lags of the

dependent variable and the exogenous regressors while still allowing for spatial dependence in the

error term. Lee (2002, 2004) provides a rigorous asymptotic framework for the analysis of such

2Anselin (1988, 2001) and Anselin and Bera (1998) summarize the early developments of spatial econometrics,
while Lee and Yu (2010c) report recent developments in spatial panel data models.

3Sarafidis and Wansbeek (2012) give a topical overview of the literature on weak and strong error cross-sectional
dependence with reference to spatial and factor models. Kapoor et al. (2007) and Baltagi et al. (2013) consider
panel data models with different forms of spatially correlated error components.
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mixed-regressive spatial autoregressive models, and Lee and Yu (2010b) derive asymptotic prop-

erties of quasi-maximum likelihood estimators for spatial autoregressive panel data models with

fixed effects.4 In recent years, increasing emphasis is put on jointly modeling the dynamics in the

time and the spatial dimension. Lee and Yu (2014) propose an efficient GMM estimator, while Yu

et al. (2008) and Lee and Yu (2010a) investigate the asymptotic properties of conditional quasi-

maximum likelihood estimators under asymptotics where both the time and the cross-sectional

dimension become large. They propose a bias reduction procedure to correct for the incidental-

parameters bias. Elhorst (2005, 2010) and Parent and LeSage (2011, 2012) derive unconditional

likelihood functions for panel data models that are dynamic both in time and space.

The present paper is closely related to the work of Elhorst (2010) and Parent and LeSage (2012).

They obtain an unconditional likelihood function for panel data models with a time lag and a

contemporaneous spatial lag of the dependent variable. The latter authors additionally allow for a

restricted or unrestricted spatial time lag. When the time dimension is fixed, appropriate conditions

need to be imposed on the initial observations to obtain consistent estimates. Both Elhorst (2010)

and Parent and LeSage (2012) approximate the marginal distribution of the initial observations by

observed values of the exogenous regressors following Bhargava and Sargan (1983) and Hsiao et al.

(2002) without fully accounting for the complex spatial structure. Accordingly, Elhorst (2010) finds

considerable bias in the estimate of the spatial lag coefficient. In this paper, I derive the model-

consistent distribution of the initial observations. It involves higher-order spatial lag polynomials

that potentially require an appropriate truncation for consistent estimation. Simplifications may

occur if the spatial weights matrix has a regular structure, or under a suitable restriction on the

coefficient of the spatial time lag.

The next section motivates the formulation of a time-space dynamic wage equation based

on a bargaining model with intra-household spillover effects. The general time-space dynamic

panel data model is described in Section 3 together with the derivation of the model-consistent

representation of the initial observations. The unconditional transformed likelihood function is

formulated in Section 4 for the unrestricted model, while Section 5 discusses several restricted

model specifications. Monte Carlo simulation results are provided in Section 6, and the empirical

4Kelejian and Prucha (1998, 1999), Lee (2003, 2007), and Baltagi et al. (2014), among others, propose instru-
mental variable and GMM estimators as computationally simple alternatives.
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results are presented in Section 7. Finally, Section 8 concludes.

2 Time-space dynamic wage equation

2.1 Intra-household wage spillovers

In this section, I motivate the formulation of a time-space dynamic wage equation. The term

space might be misleading here as it does not refer to the geographic location of the units but to

different individuals within the same household. More generally, space is used in this paper as a

synonym for the cross-sectional dimension of the panel. In the original meaning, it might refer to

geographical units such as districts, states, or countries. However, the methodology applies equally

well to situations where the cross-sectional units are firms, households, or individuals, as well as

any kind of financial asset or other unit of observation with an ascertainable dependence structure.

The spatial lag then captures spillover effects in industrial, social, or financial networks instead of

regional spillovers.5

Andini (2007) and Semykina and Wooldridge (2013) argue in favor of a time dynamic earn-

ings equation that income is correlated across subsequent years. In addition, I argue that intra-

household spillover effects give rise to an earnings equation that is dynamic also across space. In

the literature on the marriage premium, it is often argued that a significant marital wage premium

for men results from economies of scale and specialization within a household (Stratton, 2002)

or the positive impact of the wife’s presence on the productivity of the husband (or vice versa).

Alternatively, marriage might coincide with changes in behavior due to preference changes that

also affect labor market outcomes (Choi et al., 2008). Similar arguments can be made to ratio-

nalize a cohabitation premium which is likely to be smaller than the marriage premium because

marriage is a more stable relationship than cohabitation (Stratton, 2002). However, the existence

of these premiums does not require that both partners are working. Conversely, the effects due to

specialization might be stronger when either of the partners devotes more time to household work.

A positive link between the earnings of housemates can be justified on different grounds. First,

the literature on assortative mating argues that individuals choose spouses with similar charac-

5For example, Bramoullé et al. (2009) adopt a spatial econometric modeling approach for the identification of
peer effects in social networks.
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teristics. Consequently, this could on average also lead to similar wage profiles.6 Second, labor

market outcomes are potentially correlated among partners as a result of collective household pref-

erences. Third, a wage increase of the partner potentially carries the information content that the

macroeconomic circumstances might be favorable to ask the own employer for a pay rise. Fourth,

social norms and peer pressure not to fall behind the spouse’s wage go into the same direction.

Fifth, the income of the cohabitant can be regarded as an outside option in wage negotiations if

the household income is pooled or if there are intra-household wage transfers to compensate for

income differentials. The better the outside option the higher is the expected wage outcome in an

employer-employee bargaining problem.

2.2 Employer-employee wage bargaining model

While many different reasons can be adduced to rationalize a positive relationship between partner’s

wages, in the following I focus exemplarily on the last argument and derive a time-space dynamic

wage equation from a theoretical bargaining model. The starting point is the human capital model

of Mincer (1974) that relates net potential earnings, pit, of a worker i at a point in time t to his

productivity determinants w1it that usually include labor market experience and years of schooling:

ln pit = w′1itψ1 + ξi. (1)

ξi denotes other individual-specific characteristics such as ability that are unobserved to the econo-

metrician.

In perfectly competitive labor markets, equilibrium wages y∗it then equal net potential earnings.

Andini (2013) derives a time dynamic wage equation from a bargaining model where the outside

option is affected by unemployment benefits that depend on past income. Andini (2013) instead

considers a framework of imperfect competition by embedding the above human capital model into

a simple wage-bargaining model between the worker and an employer. In his model, unemployment

benefits are available as an outside option for the worker. Because unemployment benefits are a

function of past income, this eventually gives rise to a time-dynamic wage equation. I extend his

work to motivate a time-space dynamic wage equation by adding intra-household transfers as a

6Henz and Sundström (2001) find empirical support in favor of this hypothesis for Swedish couples.
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second outside option.

At a given time t, the worker maximizes his earnings utility, Uwit = ln yit, subject to his outside

option Ūwit = φ ln bit + δ ln tit, where bit = yi,t−1e
−w′2itψ2 denotes unemployment benefits that

depend on the worker’s wage history,7 and tit = pjte
−w′3itψ3 are (expected) intra-household trans-

fers from worker i’s partner j. More precisely, unemployment benefits are modeled as a fraction

e−w
′
2itψ2 ∈ (0, 1] of the wage in the last period, where w2it can be worker-specific or institutional

variables that determine this fraction. Regarding the intra-household transfers, when both part-

ners i and j bargain with their employers at the same time they cannot condition on the wage

realization of the other. However, they can form naive expectations based on the observed net

potential earnings pjt. Similar to the unemployment benefits, additional individual-specific or

household-specific variables w3it can affect the fraction of the partner’s expected income that is

shared within the household, e−w
′
3itψ3 ∈ (0, 1].

The parameters φ and δ are semi-elasticities that measure the relative utility gains from an

increase in the respective outside option to a corresponding increase in the labor income. If receiving

unemployment benefits is associated with a stigma, we would expect φ to be smaller than unity.8

Similarly, it can be discomfortable to rely on the partner’s income. The social pressure to accept a

paid job is potentially larger in the latter case than with unemployment benefits such that δ < φ

can be expected.

On the labor demand side, the employer maximizes his utility from offering a wage contract

to the worker, Ueit = ln (pit/yit). His outside option is characterized by the revenue per dollar

paid, rit = ew
′
4itψ4 ≥ 1, from hiring an alternative worker, Ūeit = ln rit. The variables w4it can be

macroeconomic factors related to the business cycle that affect the labor market.

We can then obtain the equilibrium wage y∗it by maximizing the Nash bargaining function with

respect to the wage yit:

Uit = (Uwit − Ūwit )θ(Ueit − Ūeit)1−θ, (2)

7For simplicity, I model the unemployment benefits as a function of the previous period’s wage only. Andini
(2013) allows them to be a function of additional time lags.

8An argument could also be made for φ > 1 if the preference for leisure is high relative to spending the same
amount of time at work.
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where θ ∈ (0, 1) is the bargaining weight of the worker. The first-order condition yields

ln y∗it = (1− θ)(φ ln bit + δ ln tit) + θ(ln pit − ln rit). (3)

By symmetry of the wage-bargaining problem for i’s partner j, we can rearrange the corresponding

first-order condition:

ln pjt =
1

θ
ln y∗jt −

1− θ
θ

(φ ln bjt + δ ln tjt) + ln rjt, (4)

which we can substitute in equation (3) by using the fact that tit is a function of pjt. We then

obtain

ln y∗it = (1− θ)φ ln yi,t−1 +
1− θ
θ

δ ln y∗jt −
(1− θ)2

θ
φδ ln yj,t−1

+

[
θ − (1− θ)2

θ
δ2

]
(w′1itψ1 + ξi)− (1− θ)φw′2itψ2 − (1− θ)δw′3itψ3 − θw′4itψ4

+
(1− θ)2

θ
φδw′2jtψ2 +

(1− θ)2

θ
δ2w′3jtψ3 + (1− θ)δw′4jtψ4. (5)

Finally, adding a stochastic error term leads us to the following time-space dynamic wage equation

that we can bring to the data:

ln yit = λ ln yi,t−1 + ρ0 ln yjt + ρ1 ln yj,t−1 + x′itβ + x′jtγ + αi + uit, (6)

where xit =
⋃4
k=1 wkit. The coefficients in the econometric model (6) are linked to the model

parameters in the equilibrium relationship (5), in particular λ = (1 − θ)φ, ρ0 = (1 − θ)δ/θ,

ρ1 = −(1 − θ)2φδ/θ. Notice that this implies the restriction ρ1 = −λρ0. Similar implications of

the bargaining model could be exploited to restrict the coefficients β and γ.

2.3 Restriction on the spatial time lag

The restriction ρ1 = −λρ0 on the coefficients in equation (6) results from the symmetry of the

bargaining problem for the two partners. Because the model predicts that λ and ρ0 are both

positive, the coefficient ρ1 of the spatial time lag should have a negative sign. The intuition can
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be found in the rearranged first-order condition (4). In the equilibrium, past wages are negatively

related to net potential earnings. Consequently, an increase in past wages can be seen as a proxy

for lower net potential earnings today which in turn reduce the outside option of the partner and

therefore his equilibrium wage outcome.

This nonlinear restriction deserves special attention beyond this particular model. Tao and

Yu (2012) derive the same restriction from a model of intertemporal consumption and investment

decisions with external habits, as well as a model of governmental policy adjustments with pol-

icy inertia and spillovers from neighboring jurisdictions. Yu and Lee (2012) and Evans and Kim

(2014) introduce technological spillovers into the neoclassical growth model and obtain an esti-

mation equation with the same nonlinear restriction for which they also find empirical support.9

As shown by Parent and LeSage (2010, 2011, 2012) and further down in the current paper, it

simplifies the computational complexity of likelihood-based estimation procedures considerably. It

also disentangles the time effect, λ, and the spatial effect, ρ0, which enhances the interpretation of

marginal effects and the computation of dynamic responses.

Equation (6) is a formulation of a time-space dynamic panel data model in the terminology of

Anselin (2001) that features a pure time lag of the dependent variable, yi,t−1, a contemporaneous

spatial lag, yjt, and a spatial time lag, yj,t−1. In the following sections, I discuss unconditional

quasi-maximum likelihood estimation of general time-space dynamic panel data models.

3 Time-space dynamic panel data model

3.1 Unrestricted model

Consider the following time-space dynamic autoregressive distributed lag model for the cross-

sectional units i = 1, 2, . . . , N , and a fixed number of time periods t = 1, 2, . . . , T :

yit = λyi,t−1 + β0xit + β1xi,t−1 +

N∑
j=1

wij(ρ0yjt + ρ1yj,t−1 + γ0xjt + γ1xj,t−1) + eit, (7)

9In the context of regional convergence, the empirical results of Parent and LeSage (2012), Ho et al. (2013), and
Fischer and LeSage (2015) provide further evidence for this particular restriction, as do the estimates of Keller and
Shiue (2007) in their analysis of trade patterns.
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where xit is a strictly exogenous regressor,10 and the spatial weights wij describe the structural

dependencies between the cross-sectional units. The initial observations yi0 and xi0 are assumed

to be observed, and the error term eit has a spatial error components structure following Kapoor

et al. (2007):11

eit =

N∑
j=1

wijρ2ejt + αi + uit, (8)

where αi is a unit-specific intercept that is allowed to be freely correlated with xit, and uit is an

independently and identically distributed error term. We can write model (7) and (8) in more

compact form as

SNyt = ANyt−1 + B0Nxt + B1Nxt−1 + et, (9)

RNet = α+ ut, (10)

where yt = (y1t, y2t, . . . , yNt)
′, yt−1 = (y1,t−1, y2,t−1, . . . , yN,t−1)′, and xt, xt−1, et, α, and ut are

stacked accordingly.12 The coefficient matrices are SN = (IN − ρ0WN ), AN = (λIN + ρ1WN ),

BlN = (βlIN +γlWN ), l = 0, 1, and RN = (IN −ρ2WN ), where WN is the N ×N spatial weights

matrix with wij as the (i, j)-th element, and IN is the identity matrix of dimension N .

The following conditions are assumed to hold:

Assumption 1: The regressor xit is strictly exogenous with respect to the error term uit such

that E[ut|x0,x1, . . . ,xT ] = 0.

Assumption 2: The sequence of error terms {uit}, i = 1, 2, . . . , N , t = 1, 2, . . . , T , are i.i.d. with

E[utu
′
t|x0,x1, . . . ,xT ] = σ2

uIN and E[utu
′
s|x0,x1, . . . ,xT ] = 0 for all t 6= s.13 The fourth moment

E[u4
it|x0,x1, . . . ,xT ] exists.

10To avoid notational complications, I restrict the exposition to a single exogenous regressor xit.
11Baltagi et al. (2013) allow the error components αi and uit to follow separate spatial autoregressive processes,

while Lee and Yu (2010b) model the spatial error dependence in uit only. For the current paper, this distinction
is not of relevance because the fixed effects αi will drop out by applying a suitable model transformation. Lee and
Yu (2010b) also allow the spatial weights to be different in equations (7) and (8). I abstract from this additional
complication.

12For convenience, in defining these vectors I suppress the subscript N that denotes the dependence on the sample
size.

13Allowing for cross-sectional heteroscedasticity is possible by adopting the approach of Hayakawa and Pesaran
(2015).
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3.2 Spatial weights matrix

The spatial weights matrix captures the cross-sectional dependency structure. In the regional

science literature, these structural dependencies typically reflect the relative location of the regional

units. WN can be an inverse distance matrix with spatial weights wij that measure the inverse of

the (geographical) distance between two regions i and j. In a broader sense, the distance between

two units can also be defined on economic grounds by considering, for example, the bilateral trade

intensity or the degree of financial connectedness. Alternatively, WN may be constructed as a

contiguity matrix where nonzero weights indicate a common border among two units. Similar to

Lee (2004) and Lee and Yu (2010b), I make the following regularity assumptions:

Assumption 3: The spatial weights wij are constant over time and at most of order h−1
N uniformly

in all i, j, with wii = 0. The sequence {hN} is bounded or divergent, and the ratio hN/N → 0 as

N →∞.

Assumption 4: The matrices SN and RN are invertible for all ρ0, ρ2 ∈ (−1/|ωmin|, 1/ωmax),

where ωmin and ωmax are the minimum and maximum eigenvalues of WN , respectively.

Assumption 5: The matrices WN , S−1
N , and R−1

N are uniformly bounded both in row and column

sum.

Assumptions 3 to 5 limit the cross-sectional dependence to a manageable degree.14 To simplify

the exposition, I further impose the following normalization:

Assumption 6: The spatial weights matrix WN is normalized to have a spectral radius of unity,

that is ||WN || = 1 for the spectral matrix norm || · ||.

Assumption 6 is neither necessary nor restrictive. A spectral radius of unity can be achieved

by dividing the spatial weights matrix by its largest eigenvalue in absolute value. The spatial

coefficients ρ0, ρ1, ρ2, γ0, and γ1 are rescaled accordingly. Alternatively, the normalization of WN

can be achieved by row standardization, that is by dividing all elements of the initial weights matrix

14See Lee (2004) for a detailed discussion.
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by the respective row sum such that
∑N
j=1 wij = 1. Notice that if the weights matrix was symmetric

before standardization the former approach preserves symmetry while row standardization may not.

In both cases, ωmax = 1 after the normalization.

For the time-space dynamic wage equation (6) with intra-household spillovers derived in Section

2 and a household size of M = 2 workers, the weights are easily constructed as wij = 1 if i and

j, with i 6= j, are members of the same household, and wij = 0 otherwise. The resulting spatial

weights matrix is a special case of a matrix used by Lee (2004) for illustrative purposes. Inspired by

Case (1991), he considers a sample with R regions (or households) that each contain M members

such that N = RM . The members within a region are spatially dependent with equal weights

but there is no dependence across regions. The spatial weights matrix thus has the symmetric

and block-diagonal form WN = IR ⊗ BM with BM = (ιM ι
′
M − IM )/(M − 1), where ⊗ denotes

the Kronecker product and ιM is an M -dimensional column vector of ones. WN is diagonalizable

and has only two distinct eigenvalues, unity with multiplicity R and (1−M)−1 with multiplicity

R(M − 1). In this case, hN/N = (M − 1)/(RM) such that Assumption 3 rules out asymptotics

where R is fixed and M →∞.

As discussed by Kripfganz (2015), the Cayley-Hamilton theorem implies that every power

K > QN of an N -dimensional square matrix can be expressed by a polynomial of order QN

when its minimal polynomial is of order QN + 1, where QN < N may or may not depend on

the dimension N . For diagonalizable matrices, QN equals the number of distinct eigenvalues

less one. Therefore, QN = 1 for this particular spatial weights matrix and we can express all

powers of WN as first-order polynomials, namely Wk
N = ζk0IN + ζk1WN for all k ≥ 0, where

ζkl = [1 − (1 −M)1−k−l](M − 1)l/M for l = 0, 1. This result also simplifies the computation of

inverse matrices that are polynomials in WN :

(a0IN − a1WN )−1 =
1

a0

∞∑
k=0

(
a1

a0
WN

)k
= b0IN + b1WN , (11)

with

b0 =
1

a0 − a1
− b1, b1 =

a1(M − 1)

(a0 − a1)[a0(M − 1) + a1]
,

for some scalar constants a0 and a1 such that the inverse has a convergent series representation.15

15See Kripfganz (2015) for a generalization of these results and additional examples.
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With these insights, we can already infer the following statement on the identification of the

model parameters:

Proposition 1: A necessary condition for identification of all parameters in the unrestricted model

(9) and (10) is QN > 1.

Proof. Consider equation (9) for a generic period t premultiplied by RN :

RNSNyt = RNANyt−1 + RNB0Nxt + RNB1Nxt−1 +α+ ut. (12)

Now suppose QN = 1 such that Wk
N = ζk0IN + ζk1WN for all k ≥ 0. Thus,

RNSN = (1 + ζ20ρ0ρ2)IN + (ζ21ρ0ρ2 − ρ0 − ρ2)WN = σ∗IN − ρ∗0WN ,

RNAN = (λ− ζ20ρ1ρ2)IN + (ρ1 − λρ2 − ζ21ρ1ρ2)WN = λ∗IN + ρ∗1WN ,

RNBlN = (βl − ζ20γlρ2)IN + (γl − βlρ2 − ζ21γlρ2)WN = β∗l In + γ∗l WN , l = 0, 1.

After normalizing the estimation equation by 1/σ∗, we obtain a reformulation of the initial time-

space dynamic panel data model with first-order spatial lags only but without spatial error depen-

dence. Consequently, we cannot identify all spatial lag parameters ρ0, ρ1, γ0, and γ1 jointly with

ρ2 when QN = 1.

Therefore, a spatial weights matrix with QN = 1 requires identifying restrictions on the model

parameters, for example ρ0 = 0 or ρ2 = 0. However, the models under these two restrictions

are still observationally equivalent. Differentiating between spatial lag dependence, ρ0 6= 0 and

ρ2 = 0, and spatial error dependence, ρ0 = 0 and ρ2 6= 0, is only possible if at least one additional

coefficient of the right-hand side variables is restricted to zero. When QN > 1, identification is in

general feasible but might be weak if the second-order spatial lags W2
Nyt and W2

Nxt are highly

correlated with (yt,WNyt) and (xt,WNxt), respectively.
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3.3 Model transformation and initial observations

To remove the time-invariant incidental parameters α from equation (9), we can apply a linear

filter ∆t such that ∆tα = 0. When L denotes the time lag operator, ∆t may inter alia be the

operator that creates first differences, ∆t = ∆ = 1−L, the forward-orthogonal deviations operator,

∆t =
√

(T − t)/(T − t+ 1)[1 −
∑T−t
s=1 L

−s/(T − t)], or the operator that creates deviations from

the time means, ∆t = 1−
∑T
s=1 L

t−s/T .16 In this paper, I follow Hsiao et al. (2002) and focus on

the first-difference transformation that yields

SN∆yt = AN∆yt−1 + B0N∆xt + B1N∆xt−1 + R−1
N ∆ut. (13)

The model in equation (13) is well defined for t = 2, 3, . . . , T but not for t = 1 because ∆y0 and

∆x0 are unobserved. By continuous substitution we can write

SN∆y1 = (ANS−1
N )pSN∆y1−p

+

p−1∑
s=0

(ANS−1
N )s(B0N∆x1−s + B1N∆x−s) +

p−1∑
s=0

(ANS−1
N )sR−1

N ∆u1−s, (14)

which still depends on unobservables. Let ∆x = (∆x′1,∆x′2, . . . ,∆x′T )′. Similar to Hsiao et al.

(2002), I make either of the following two assumptions:

Assumption 7.1: The process started in the infinite past, p → ∞, and reached stationarity,

||ANS−1
N || < 1.

Assumption 7.2: The process was initiated at some finite period in the past with E[∆y1−p|∆x] =

ϕ0ϕ(WN )ιN , where |ϕ0| <∞, ϕ(WN ) = IN +
∑∞
k=1 ϕkW

k
N , and there exists a real constant qϕ,

0 < qϕ < 1, such that |ϕk| ≤ qkϕ for all k ≥ 1.17

The stationarity condition ||ANS−1
N || < 1 implies a restriction on the coefficients, namely

16As shown by Arellano and Bover (1995) and Bun and Kiviet (2006), the resulting least squares estimator
conditional on the initial observations is invariant to the particular transformation. Hsiao et al. (2002) derive a
similar result for the unconditional transformed likelihood estimator.

17Consequently, the sequence of coefficients {ϕk} decays to zero at an exponential rate, and ||ϕ(WN )|| ≤ 1 +∑∞
k=1 |ϕk| · ||WN ||k <∞ since WN is normalized to have a spectral radius of unity.
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|(λ+ρ1ωj)(1−ρ0ωj)
−1| < 1 for all eigenvalues ωj , j = 1, 2, . . . , N , of WN .18 Moreover, I generalize

the stationarity assumption for the regressor xit made by Hsiao et al. (2002) to allow for spatial

dependence:

Assumption 8: xt is generated either by a trend stationary or a first-difference stationary process

such that

∆xt = ς(WN )

(
gιN +

∞∑
s=0

dsεt−s

)
, (15)

where ς(WN ) = IN +
∑∞
k=1 ςkW

k
N is bounded away from zero, and there exists a real constant qς ,

0 < qς < 1, such that |ςk| ≤ qkς for all k ≥ 1. Also,
∑∞
s=0 |ds| < ∞, and εt are independently and

identically distributed with E[εt] = 0, and E[εtε
′
t] = σ2

ε IN .

For example, if ςk = ςk for all k and |ς| < 1 such that ς(WN ) = (IN − ςWN )−1 then ∆xt

follows a first-order spatial autoregressive process. Under normality of εt, Assumption 8 implies19

E[∆x1−s|∆x] = bs0ς(WN )ιN +

T∑
l=1

bsl∆xl, (16)

such that we can rewrite equation (14) as

SN∆y1 = ψ(WN )ιN +

T∑
l=1

πl(WN )∆xl + ν̃1, (17)

where

ψ(WN ) = (ANS−1
N )pSNϕ0ϕ(WN ) + π0(WN )ς(WN ), (18)

πl(WN ) =

p−1∑
s=0

(ANS−1
N )s(bslB0N + bs+1,lB1N ), l = 0, 1, . . . , T. (19)

Under Assumption 7.1, expression (18) reduces to ψ(WN ) = π0(WN )ς(WN ). Also, π0(WN ) = 0

18Compare Elhorst (2001), Yu et al. (2008), and Parent and LeSage (2011, 2012).
19If εt are not normally distributed, equation (16) can be seen as a linear projection. See Hsiao et al. (2002).
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if g = 0 in equation (15). The initial observations error term turns out to be

ν̃1 = (ANS−1
N )pSNqy,1−p +

p−1∑
s=0

(ANS−1
N )s(B0Nqx,1−s + B1Nqx,−s + R−1

N ∆u1−s), (20)

where qy,1−p = ∆y1−p − E[∆y1−p|∆x] and qx,s = ∆xs − E[∆xs|∆x] are projection errors with

variances τy,1−pϕ(WN )ϕ(WN )′ and τx,sς(WN )ς(WN )′, respectively. To simplify the formulation

of the likelihood function, notice that the distribution of the error term ν̃1 is observationally

equivalent to that of φ−1(WN )R−1
N ν1, where

φ−1(WN ) =

√
τy,1−p
σ2
ν

(ANS−1
N )pSNϕ(WN )RN

+

p−1∑
s=0

(ANS−1
N )s

[√
τx,1−s
σ2
ν

B0N ς(WN ) +

√
τx,−s
σ2
ν

B1N ς(WN )

]
RN +

√
2

τ

p−1∑
s=0

(ANS−1
N )s, (21)

and ν1 is a composite error with the properties E[ν1|∆x] = 0, E[ν1ν
′
1] = σ2

νIN with σ2
ν/σ

2
u = τ ,

E[ν1∆u′t] = 0 for all t = 3, 4, . . . , T , and E[ν1∆u′2] = −σ2
uφ(WN ).20 Finally notice that the

functions ψ(WN ), πl(WN ), and φ(WN ) can be written as polynomials in WN such that

ψ(WN ) =

QN∑
k=0

ψkW
k
N , (22)

πl(WN ) =

QN∑
k=0

πklW
k
N , l = 1, 2, . . . , T, (23)

φ(WN ) = IN +

QN∑
k=1

φkW
k
N , (24)

where the order QN equals the order of the minimal polynomial of the spatial weights matrix less

one, as discussed in Section 3.2. The first coefficient in the polynomial φ(WN ) is standardized to

unity by appropriately scaling φ−1(WN ) in equation (21).

In the case of the spatial weights matrix WN = IR ⊗ BM from Section 3.2, the polynomials

φ(WN ) and πl(WN ) reduce both to the first order irrespective of the sample size, and ψ(WN )

becomes a scalar multiple of the identity matrix due to row standardization. Moreover, if the

20The variance of ν1 follows from a suitable scaling of φ−1(WN ), and the covariance term E[ν1∆u′2] =

−σ2
uφ(WN ) results from E[φ−1(WN )R−1

N ν1∆u′2] = E[ν̃1∆u′2] = −σ2
uR
−1
N .

16



exogenous regressor is a region-specific variable such that xt = (x1t, x2t, . . . , xRt)
′ ⊗ ιM , the order

of πl(WN ) shrinks to zero because WN∆xt = ∆xt in this case.21

Remark 1: At this stage, we shall compare the formulation (17) of the initial observations with

that of Elhorst (2010). He considers a restricted version of model (9) with ρ1 = β1 = γ0 = γ1 = 0

such that AN = λIN , B0N = β0IN , and B1N = 0. His projection is then characterized by

ψ(WN ) = ψIN , and πl(WN ) = πlIN for l = 1, 2, . . . , T . However, even with a row-standardized

spatial weights matrix a model-consistent representation demands πl(WN ) = β
∑p−1
s=0 λ

sS−sN bsl,

l = 0, 1, . . . , T , which is not free of spatial dependence irrespective of whether p → ∞ or not.

It also does not depend on the choice of ϕ(WN ) and ς(WN ). Similar arguments apply to the

projection of Parent and LeSage (2012) in the context of an unrestricted random effects model

without a first-difference transformation. A set of restrictions that removes this kind of spatial

dependence is discussed in Section 5.

3.4 Covariance matrix

The variance-covariance matrix of the stacked vector of errors ∆u = (ν′1,∆u′2, . . . ,∆u′T )′ is given

by

Ω̃ = σ2
u



τIN −φ(WN ) 0 · · · 0

−φ(WN )′ 2IN −IN

0 −IN 2IN
...

. . . −IN

0 −IN 2IN


. (25)

The cross-sectional dependence in the covariance of ν1 and ∆u2 is an unfortunate characteristic

of this model as it considerably complicates both the numerical and the analytical inversion of

Ω̃.22 As a computationally tractable circumvention of this problem, I propose the approximation

21See also Kripfganz (2015).
22It can be shown that using forward-orthogonal deviations instead of first differences does not solve this problem.

While in that case E[∆sus∆tu′t] = 0 for all s 6= t, it holds E[∆0u−s∆T−su
′
T−s] = −

√
s/[(s+ 1)T (T + 1)]σ2

uIN
for all s > 0, which creates a nonzero correlation between the transformed errors ∆tut, t = min(1, T −p), . . . , T − 1,
and the composite initial observations error.
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Ω̃ ≈ Ω⊗ IN , with

Ω = σ2
uΩ∗ = σ2

u



τ −1 0 · · · 0

−1 2 −1

0 −1 2

...
. . . −1

0 −1 2


, (26)

which corresponds to a truncation of the polynomial φ(WN ) in equation (25) at order zero. The

covariance matrix (26) is identical to that of the pure time dynamic model analyzed by Hsiao et al.

(2002) who show that |Ω| = σ2T
u [1 + T (τ − 1)]. As I demonstrate in Section 6, the transformed

likelihood estimator performs well under this approximation.

4 Quasi-maximum likelihood estimation

With

∆yt =


g̃(ν1) = E[∆y1|∆x] + S−1

N φ−1(WN )R−1
N ν1 , t = 1

g(∆ut) = E[∆yt|∆yt−1, . . . ,∆y1,∆x] + S−1
N R−1

N ∆ut , t = 2, 3, . . . T

, (27)

we can write the joint density of ∆y = (∆y′1,∆y′2, . . . ,∆y′T )′ conditional on ∆x as

fy(∆y|∆x) =fy1(∆y1|∆x)

T∏
t=2

fyt(∆yt|∆yt−1, . . . ,∆y1,∆x∗)

=fν1

(
g̃−1(∆y1)|∆x

)
abs

(
|J̃(∆y1)|

)
×

T∏
t=1

fut
(
g−1(∆yt)|∆yt−1, . . . ,∆y1,∆x

)
abs (|J(∆yt)|) , (28)

where fyt, fut, and fν1 denote the marginal density functions of ∆yt, ∆ut, and ν1, respectively.

Notice the appearance of the two terms abs(|J(∆yt)|) and abs(|J̃(∆y1)|) that denote the absolute

value of the determinant of the Jacobian matrix of g−1 with respect to ∆yt and g̃−1 with respect

to ∆y1, respectively. Assuming for simplicity that all eigenvalues ωl of WN are real-valued, it is
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readily seen from equation (27) that

|J(∆yt)| = |RNSN | =
N∏
l=1

(1− ρ2ωl)(1− ρ0ωl), (29)

which is independent of t and strictly positive as a consequence of Assumption 6.23 Similarly,

|J̃(∆y1)| = |RNSNφ(WN )| =
N∏
l=1

(1− ρ2ωl)(1− ρ0ωl)

(
1 +

QN∑
k=1

φkω
k
l

)
. (30)

When fut and fν1 describe the density function of the normal distribution, the log-likelihood

function is given by

lnL =− NT

2
ln(2π)− 1

2
ln |Ω̃| − 1

2
∆u′Ω̃−1∆u

+ T

N∑
l=1

ln(1− ρ2ωl) + T

N∑
l=1

ln(1− ρ0ωl) +

N∑
l=1

ln

(
1 +

QN∑
k=1

φkω
k
l

)
, (31)

with

∆u = (IT ⊗RN )ΦNT [(IT ⊗ SN )∆y −∆Z∗θ∗], (32)

where θ∗ = (θ̃
′
,θ′)′, θ̃ = (ψ0, ψ1, . . . , ψQN

,π′0,π
′
1, . . . ,π

′
QN

)′, θ = (λ, ρ1, β0, γ0, β1, γ1)′, πk =

(πk1, πk2, . . . , πkT )′,

ΦNT =

φ(WN ) 0

0 IN(T−1)

 , ∆Z∗ =

∆Z̃ 0

0 ∆Z

 ,

∆Z̃ = (ιN ,WN ιN , . . . ,W
QN

N ιN ,∆X,WN∆X, . . . ,WQN

N ∆X), ∆X = (∆x1,∆x2, . . . ,∆xT ), and

∆Z =


∆y1 WN∆y1 ∆x2 WN∆x2 ∆x1 WN∆x1

...
...

...
...

...
...

∆yT−1 WN∆yT−1 ∆xT WN∆xT ∆xT−1 WN∆xT−1

 .

23Compare Ord (1975). If WN has complex eigenvalues, it holds that abs(|SN |) =
∏N

l=1[(1 − ρ0Re(ωl))
2 +

(ρ0Im(ωl))
2]1/2, where Re(ωl) and Im(ωl) denote the real and imaginary part of ωl, respectively (Lee, 2002, Note

7). In the remainder of the paper, I assume for simplicity that all eigenvalues are real. The latter is guaranteed
if WN is symmetric, or if WN is similar to a symmetric matrix which holds if WN was symmetric before row
standardization.
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Under the approximation Ω̃ ≈ Ω ⊗ IN we get the simplifications Ω̃−1 = Ω−1 ⊗ IN and ln |Ω̃| =

NT ln(σ2
u) +N ln (1 + T (τ − 1)).

When the order QN increases with the sample size, an incidental-parameters problem might

occur depending on the rate at which QN grows to infinity. In that case, a solution lies in the

truncation of the polynomials φ(WN ), ψ(WN ), and πl(WN ) such that the truncation order KN

satisfies the following condition:

Assumption 9: The truncation order KN satisfies KN ≤ QN for all N , KN → Q as QN → Q for

0 < Q ≤ ∞, and K3
N/N → 0 as N →∞.24

QN might be bounded or not. If Q <∞ it is in most cases safe to set KN = QN unless there are

not enough degrees of freedom in small samples. In the case of WN = IR⊗BM as before, QN = 1

for all N and no truncation is needed to obtain consistent estimates. Now consider a generalization

with a potentially differing number of members in each group. As shown by Kripfganz (2015), QN

is then determined by the number of distinct group sizes. If there is an upper bound M̄ for the

group size, QN may still depend on the sample size but is bounded by M̄ . When there is no upper

bound on the group size, we have to distinguish between increasing-domain asymptotics, R→∞,

and fixed-domain asymptotics, M →∞ while R is fixed. In the first case, QN →∞ as R→∞ and

a truncation becomes necessary unless further restrictions are imposed on the distribution of the

group sizes. In the second case, QN is bounded above by R. However, fixed-domain asymptotics

are incompatible with Assumption 3 as discussed by Lee (2004).

Maximization of the log-likelihood function can be done with an iterative procedure such as

Newton-Raphson. Appendix A provides the analytical first-order and second-order derivatives.

The initial parameter estimates can be obtained from a consistent GMM estimation. Alternatively,

we can obtain initial estimates for (λ, β0, β1, ψ0,π
′
0, σ

2
u, τ) with the transformed likelihood estimator

of Hsiao et al. (2002) assuming absence of spatial dependence. The remaining parameters are

initialized as zero. We can further improve the quality of the initial estimates by applying a

sequential iterative procedure similar to the algorithm proposed by Anderson and Hsiao (1982).

By substituting the initial estimate of τ into the closed-form solutions for the parameters in θ∗ we

24The condition K3
N/N → 0 originates from the work of Berk (1974) and Said and Dickey (1984). Chudik and

Pesaran (2013) assume K3
N/T → c, 0 < c <∞, as T →∞ such that K3

N/(NT )→ 0 as both (T,N)→∞.

20



can update the latter, keeping fixed the spatial parameters ρ0, ρ2, and φ1, φ2, . . . , φKN
at zero (or

any other initial value). These new values can then be used to obtain a new estimate of τ , and so

on. In contrast to the pure time dynamic model, this sequential iterative approach does not yield

the quasi-maximum likelihood estimates because closed-form solutions for the spatial parameters

ρ0, ρ2, and φ1, φ2, . . . , φKN
are not available.

5 Restricted model specifications

In the literature, several restricted versions of model (9) are considered.25 In this section, I focus

on some of these restrictions that have particular implications for econometric modeling. All of the

following restrictions can be tested by means of a likelihood ratio test. The test statistic has a χ2

distribution with r degrees of freedom that are determined by the number of imposed restrictions:

LR = 2(lnL − lnL0) ∼ χ2
r, (33)

where lnL denotes the maximized value of the unrestricted log-likelihood function (31) and lnL0

that of the restricted log-likelihood function.

5.1 Restricted time-space dynamic panel data model

Parent and LeSage (2012) consider the particularly interesting nonlinear restriction ρ1 = −λρ0 that

leaves the model time-space dynamic but enhances the interpretability of the model parameters as

it disentangles the time and spatial effects.26 The same restriction emerges also from the theoretical

bargaining model with intra-household wage spillovers discussed in Section 2. In the presence of

distributed spatial lags, I extend this idea and impose the additional nonlinear restriction β1γ0 =

β0γ1.

The first restriction implies AN = λSN , and the second restriction yields B1N = κB0N with

25Elhorst (2001) summarizes the resulting models under certain parameter restrictions.
26Alternatively, both effects can be separated by setting ρ1 = 0. This restriction does not deserve particular

attention because it leaves the derivations in Sections 3 and 4 unaffected.
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κ = β1/β0, assuming that β0 6= 0. As a consequence, model (9) becomes

SNyt = λSNyt−1 + B0N (xt + κxt−1) + et. (34)

The stationarity condition imposed by Assumption 7.1 simplifies to |λ| < 1. Under Assumption 7.2,

we may assume ϕ(WN ) = S−1
N R−1

N to simplify the distribution of the initial observations. Similarly,

we shall assume ς(WN ) = β0B
−1
0NR−1

N in Assumption 8, provided that B0N is nonsingular and

|γ0/β0| < 1. Under these two restrictions, ψ(WN ) = ψR−1
N in equation (18), and the projection

error for the initial observations has the same spatial dependence structure as the error terms for the

other periods, φ−1(WN )R−1
N ν1 = R−1

N ν1, since φ(WN ) collapses to the identity matrix. Finally,

πl(WN ) in equation (19) does not depend on the particular form of ϕ(WN ) and ς(WN ) and

becomes a first-order polynomial. The restriction that is imposed on ς(WN ) may be disputable.

Particularly in the absence of distributed spatial lags, that is γ0 = γ1 = 0, it boils down to the

assumption that the spatial dependence structure of xit coincides with the spatial error dependence

of yit.

If we accept all of the above restrictions, the initial observations satisfy

SN∆y1 = ψR−1
N ιN +

T∑
l=1

(π0lIN + π1lWN )∆xl + R−1
N ν1. (35)

Notice that the approximation of the variance-covariance matrix proposed in Section 3.4 becomes

obsolete as well. Consequently, the restricted log-likelihood function is given as

lnLr =− NT

2
ln(2πσ2

u)− N

2
ln (1 + T (τ − 1))− 1

2
∆u′r(Ω

−1 ⊗ IN )∆ur

+ T

N∑
l=1

ln(1− ρ2ωl) + T

N∑
l=1

ln(1− ρ0ωl), (36)

with

∆ur = (IT ⊗RN )[(IT ⊗ SN )∆y −∆Z∗rθ
∗
r ]− ψs1, (37)

where s1 = (ι′N ,0, . . . ,0)′, and θ∗r = (θ̃
′
r,θ
′
r)
′ is partitioned in a similar fashion as in the un-

restricted case, with θ̃r = (π′0,π
′
1)′, θr = (λ, β0, γ0)′, and πk = (πk1, πk2, . . . , πkT )′, k = 0, 1.
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Moreover,

∆Z∗r =

∆Z̃r 0

0 ∆ZH

 ,

where ∆Z̃r = (∆X,WN∆X), and H is a matrix that contains the parameter restrictions:

H =

hρ 0

0 Hκ

 , hρ =

 1

−ρ0

 , Hκ =

 I2

κI2

 .

The analytical derivatives for a gradient-based optimization are provided in Appendix A.

The degrees of freedom for the likelihood ratio test exceed the two restrictions ρ1 = −λρ0

and β1γ0 = β0γ1 because the additional coefficients for the higher-order spatial lags in equation

(17) compared to equation (35) are treated as free parameters. The total number of restrictions is

r = 2+(T +2)KN−T . If WN is row standardized, r is reduced by KN . If more than one regressor

is included in the model, each additional regressor adds another T (KN − 1) restrictions.27

5.2 Pure time dynamic panel data model

The time dynamic model without spatial lags is nested in model (9) by restricting ρ0 = ρ1 = γ0 =

γ1 = 0 such that

yt = λyt−1 + β0xt + β1xt−1 + et. (38)

Without loss of generality, we can leave the spatial error coefficient ρ2 unrestricted. Under the

Assumption 7.1, the stationarity condition simplifies again to |λ| < 1. If the process started in the

finite past and WN is not row standardized, we need to restrict ϕ(WN ) = R−1
N in Assumption 7.2

unless ϕ0 = 0. Otherwise, the polynomial φ(WN ) does not vanish. As in the previous subsection,

the projection error φ−1(WN )R−1
N ν1 still suffers from cross-sectional correlation if we continue to

allow for spatial dependence in the data generating process of xt by leaving ς(WN ) unconstrained.

We thus have to additionally impose ς(WN ) = R−1
N . πl(WN ) becomes a scalar multiple of the

identity matrix irrespective of any restriction on ϕ(WN ) or ς(WN ).

The absence of spatial dependence can be tested again with a likelihood ratio test. With a

27When γ0 = γ1 = 0 both in the unrestricted and the restricted model, as considered by Parent and LeSage
(2012), we have r = 2 + (T + 2)KN and each additional regressor adds TKN restrictions.

23



similar argument as in the previous subsection, the degrees of freedom are r = 4 + (T + 2)KN

because the spatial lag coefficients in the initial observations are treated as free parameters in

the unrestricted model and need to be restricted to zero as well. If WN is row standardized the

number of restrictions reduces to r = 4 + (T + 1)KN . If more than one regressor is included in the

model, each additional regressor adds another TKN restrictions.

5.3 Pure space dynamic panel data model

The space dynamic model without time lags is nested as well in model (9) by considering the

restrictions λ = ρ1 = β1 = γ1 = 0. In this case, the distribution of the initial observations does not

depend on unobservables and can be obtained directly from the model. Therefore, it is irrelevant

for the specification of the likelihood function if the exogenous regressors are cross-sectionally

correlated or not. Technically, we have to impose the additional (T + 2)(KN + 1)− 1 restrictions

π10 = β0, π11 = γ0, πsk = 0 if s > 1 or k > 1, as well as φk = ψk = 0 for all k ≥ 1. Also,

the initial observations error term now has the same distribution as the errors for the other time

periods. This implies the final restriction τ = 2. The likelihood ratio test statistic (33) is thus

based on r = 4 + (T + 2)(KN + 1) degrees of freedom that are again reduced by KN if WN is row

standardized. Each additional regressor adds T (KN + 1) restrictions.

Notice that by imposing these linear parameter restrictions, the unconditional QML estima-

tor obtained in Section (4) collapses to the QML estimator proposed by Lee and Yu (2010b).28

Furthermore, with the two additional restrictions ρ0 = γ0 = 0, the least squares dummy variables

estimator for the static model can also be viewed as a constrained estimator within the general

time-space dynamic framework.

28Lee and Yu (2010b) consider the forward-orthogonal model transformation instead of first differences to remove
the incidental fixed effects parameters. However, the estimator is invariant to the choice of the transformation
matrix as demonstrated by Arellano and Bover (1995).
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6 Monte Carlo simulation

6.1 Simulation design

To analyze the finite-sample performance of the estimator, I conduct the following Monte Carlo

experiments. The data generating process of the dependent variable, yit, has the same time-space

dynamic structure as in the simulation exercise of Parent and LeSage (2012):

yt = λyyt−1 + ρy0WNyt + ρy1WNyt−1 + βxt +αy + ut, ut
iid∼ N (0, σ2

uIN ). (39)

The regressor xit features similar autoregressive dynamics in both dimensions:

xt = λxxt−1 + ρx0WNxt + ρx1WNxt−1 +αx + εt, εt
iid∼ N (0, σ2

ε IN ), (40)

such that xt is strictly exogenous with respect to ut. The unobserved unit-specific effects αy and

αx are generated from a joint normal distribution:

αyi
αxi

 ∼ N

0

0

 ,

 σ2
αy σαyx

σαyx σ2
αx


 . (41)

When σαyx 6= 0 it is inappropriate to consider the unit-specific effects in equation (39) as random

with respect to xt. The spatial weights matrix WN is generated following Lee (2004). There are

R regions with M members each. All members have equal weight within the same region and

are spatially unrelated to members of other regions. Therefore, WN = IR ⊗ BM with BM =

(ιM ι
′
M − IM )/(M − 1).

I set the unconditional long-run effect of xt on yt to unity. That is β = 1 − λy − ρy0 − ρy1.29

The processes are initialized at t = −5 with their long-run means conditional on the realizations

29Parent and LeSage (2012) restrict the long-run effect of xt on (IN − ρy0WN )yt to unity such that β =
(1 − λy − ρy0 − ρy1)/(1 − ρy0). However, they set down the reciprocal of that fraction which is presumably a
typographical error.
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of the unit-specific effects:

y−5 = [(1− λy)IN − (ρy0 + ρy1)WN ]−1(βx−5 +αy) (42)

x−5 = [(1− λx)IN − (ρx0 + ρx1)WN ]−1αx. (43)

The matrix inverses can be computed efficiently with the inversion formula (11). The first 5

observations are discarded. Furthermore, I fix λy = λx = 0.4, ρy0 = ρx0 = 0.2, ρy1 = ρx1 = −0.08,

σ2
u = σ2

ε = 1, σ2
αy = σ2

αx = 3, and σαyx = 1.5. The time span is T = 9 and the cross-sectional

dimension varies along R ∈ {10, 20, 50} and M ∈ {2, 5, 10, 20, 50}. For each simulation I perform

1000 replications.

I estimate the model with three versions of the unconditional transformed likelihood estimator

developed in this paper. For the first estimator, I impose the nonlinear restriction ρy1 = −λyρy0

which is valid given the parameter values in the data generating process. As discussed in Section

5, this restriction simplifies the distribution of the initial observations by removing the spatial lags

of the exogenous regressor. However, since xit itself is spatially correlated the initial observations

error term will still exhibit cross-sectional dependence, and by the Cayley-Hamilton theorem the

order of φ(WN ) equals one. To analyze the impact of a different choice for the truncation order, I

further compare the performance of two otherwise unrestricted estimators. The truncation order

KN is either set to zero or unity for all polynomials πl(WN ) and φ(WN ). Finally, as a benchmark

I add the bias-corrected conditional transformed likelihood estimator of Yu et al. (2008) to the

simulation study. The optimization is performed with a Newton-Raphson algorithm, and analytical

derivatives of the log-likelihood function are used to sizeably increase the computation speed of

this gradient-based optimization.30

6.2 Simulation results

Tables 1 and 2 show the average bias and the root mean square error (RMSE) of the parameter

estimates for different combinations of R and M . With increasing R and fixed M the spatial

weights matrix becomes relatively more sparse, while with increasing M and fixed R it becomes

30First-order and second-order derivatives can be found in Appendix A. The bias-corrected estimator of Yu et al.
(2008) is briefly sketched in Appendix B. Stata estimation files are available from the author upon request.
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relatively more dense. The simulation results reveal that this distinction is important for the

spatial lag coefficients ρy0 and ρy1. When M increases, neither the bias nor the RMSE of the

estimators show a clear tendency to go down for these coefficients. This observation is in line with

the argumentation of Lee (2004) that the quasi-maximum likelihood estimators are inconsistent

under fixed-domain asymptotics.31 Intuitively, by holding the number of regions R fixed and

increasing the number of members M the spatial structure changes and there is no informational

gain about the spatial dependence parameters. To the contrary, with increasing domain R both the

bias and the RMSE of all estimators shrink for the spatial lag coefficients. Clearly, the statistical

inference can be improved by drawing additional regions R from the population that have the

same dimension as the previously sampled data. For the coefficients λy and β, the direction of the

asymptotics does not matter. In fact, the bias and RMSE have about the same magnitude for a

given sample size N irrespective of the ratio M/R.

[Table 1 about here.]

[Table 2 about here.]

Another observation concerns the unconditional transformed likelihood estimator with trunca-

tion order KN = 1. For small sample sizes, in particular when R = 10, it shows unexpectedly large

biases and dispersions for the parameters that capture the dynamics across time and space. In the

extreme case, N = RM = 20, the estimator even breaks down completely as the Newton-Raphson

algorithm fails to converge. This is likely to be a consequence of overparameterizing the distri-

bution of the initial observations. With more observations at hand convergence can be achieved

although large distortions remain when the sample increases only in the direction of M . I conjec-

ture that the source of these distortions can be found in the vicinity of the too many instruments

problem in instrumental variable estimations. As a remedy serves the restriction of the truncation

order to KN = 0. The resulting estimator convinces with a reasonably small bias and RMSE even

in very small samples. When R increases, the performance of both estimators becomes comparable

for the parameters λy and β while the truncated version, KN = 0, retains its lead for the spatial

lag coefficients ρy0 and ρy1.

31The Monte Carlo findings of Bao (2013) also confirm this result.
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Not surprisingly, the unconditional likelihood estimator with the valid nonlinear restriction

ρy1 = −λyρy0 shows by far the lowest root mean square error for the restricted coefficient ρy1. The

gains spill over to the coefficient λy, in particular when M is small, while it seems to come at the

cost of a slightly increased RMSE for the coefficient ρy0.

Leaving aside the specific problems when R is small of the estimator without truncation, KN =

QN = 1, the unconditional likelihood estimators perform well in comparison to the bias-corrected

conditional likelihood estimator of Yu et al. (2008). For the coefficient λy, the latter reveals a

larger bias than the unconditional estimators but can convince with the smallest RMSE under

most combinations of R and M . Interestingly, for the spatial parameters ρy0 and ρy1 this picture

flips upside down. Here, the bias-corrected estimator shows a smaller bias than the unconditional

estimators but a larger RMSE than its unrestricted competitor with truncation order KN = 0.

Eventually, for R = 50 even the unrestricted estimator with KN = 1 passes by the bias-corrected

estimator in terms of RMSE.

[Table 3 about here.]

While studying the estimator performance for the individual parameters provides useful in-

sights, the main quantities of interest in empirical studies are the marginal effects of xit on yit. In

space dynamic models we can divide the total marginal effect into a direct and an indirect effect.

The time dynamics in addition allow to distinguish between short-run and long-run effects. Table

3 provides the simulation results for the marginal effects for the sample dimensions R = 50 and

M = 2. For the short-run effects, all the estimators under comparison are essentially indistinguish-

able. Notable differences emerge for the long-run effects. The unconditional likelihood estimator

that exploits the valid restriction ρy1 = −λρy0 convinces in particular with a RMSE for the indi-

rect long-run effect that is less than half of the RMSE for the other estimators. This comparative

advantage carries over to the total long-run effect. However, also the unconditional estimators

without this restriction show lower RMSEs than the bias-corrected conditional likelihood estima-

tor. Here, the advantages of modeling the distribution of the initial observations under a short

time horizon as opposed to a bias-correction that is derived under large-T asymptotics become

evident.
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7 Application

7.1 Data description

For the estimation of the time-space dynamic wage equation that was derived in Section 2, I use

biennial data from the Panel Study of Income Dynamics (PSID) for the years from 2001 to 2011.

According to the Mincerian theory of wage determination, labor market experience plays a key

role as an explanatory factor of net potential earnings. I proxy experience by the age of the indi-

viduals. Because age is linearly growing over time, as is experience in the absence of career gaps,

in first differences it reduces to a constant term. Therefore, its coefficient cannot be identified

separately from the set of time-specific effects that are included to capture fluctuations and trends

in macroeconomic conditions. However, the coefficient of squared age is still identifiable. Further-

more, I include dummy variables for union coverage, marriage, and the number of children living

in the same family unit. When the model includes a spatial lag, the marriage variable is supposed

to capture a true marriage premium that is not confounded with a mere cohabitation premium.

As additional control variables, I include three industry dummies (primary sector, manufacturing,

and public administration) and three regional dummies (northeast, north central, and south), such

that the baseline group is workers in the services sector living in the western part of the United

States. Other explanatory variables such as education, gender, race, or family background are

time-invariant characteristics that are removed by the first-difference transformation.32 Further

details on the variables can be found in Appendix C.

The PSID does not only allow to track individuals over time but also to link them to other

individuals living in the same household. I restrict the sample to individuals that report a nonzero

hourly wage rate for all periods. Furthermore, I dismiss all individuals that earned less than the

federal minimum wage in at least one of the years.33 To avoid time-varying spatial weights, I

dismiss workers that did not stay together with the same cohabitant over the sample period. This

leads to a strongly balanced sample of N = 738 individuals of which 138 have a working housemate.

Consequently, there is a total of R1 = 600 households with workers that are either single or have a

32The effects of time-invariant regressors could be estimated under potentially restrictive exogeneity assumptions
by adjusting the two-stage procedure proposed by Kripfganz and Schwarz (2019).

33The federal minimum wage was raised from 5.15 USD to 7.25 USD per hour on July 24, 2009. I selected the
individuals based on the former for the years 2001 to 2009, and based on the latter for the final year 2011.
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partner that is not working (and thus not part of the sample), and R2 = 69 dual-earner households.

By appropriately ordering the individuals, the spatial weights matrix has the following symmetric

and block-diagonal structure:

WN =

IR1
⊗B1 0

0 IR2 ⊗B2

 , B1 = 0, B2 =

0 1

1 0

 .

This matrix is a special case of the spatial weights matrix discussed in Section 3.2 with R̃ = M̃ = 2.

WN is diagonalizable and has three distinct eigenvalues, namely unity and minus unity with

multiplicity R2 each, and zero with multiplicity R1 = N − 2R2. As discussed by Kripfganz (2015),

we can thus write higher-order powers of WN as second-order polynomials which determines the

order QN = 2 of the polynomials φ(WN ) and πl(WN ) in Section 3.3. Moreover, the row sum of

WN is unity for the last 2R2 rows and zero for the remaining rows. It is therefore only partially

row standardized which requires ψ(WN ) to be a first-order polynomial.34

In the current analysis, the labor market participation decision is left aside. In general, an

increase in the relative wage of the cohabitant may have an adverse effect on the own participation

as specialization in household labor becomes comparatively more advantageous. However, if a

worker decides to reduce the number of hours worked this does not have to be reflected in an

adjustment of hourly wage rates. If the hours are reduced to zero in any period the worker drops

out from the estimation sample for all periods. The resulting sample selection is therefore a time-

invariant characteristic and thus captured by the individual-specific effects.

7.2 Marginal effects and the cohabitation premium

For parsimony, consider model (9) with the restrictions β1 = γ0 = γ1 = 0. To obtain marginal

effects of the exogenous regressor variable, the following result for this particular spatial weights

matrix is helpful:35

(IN − ρ0WN )−1 = IN +
ρ0

1− ρ2
0

WN +
ρ2

0

1− ρ2
0

W2
N , (44)

34A similar argument applies to πl(WN ) if xit is a household-specific regressor that takes on the same value for
both partners, as it is the case for marriage, children, and the regional dummies.

35See LeSage and Pace (2009) for a discussion of direct, indirect, and total marginal effects in spatial econometric
models with an arbitrary spatial weights matrix.
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where W2
N equals the identity matrix with the first R1 main diagonal elements replaced by zero.

We then have the short-run direct marginal effect

∂E[yit|yt−1,xt,α]

∂xit
=


β , i ≤ R1

β
(

1 +
ρ20

1−ρ20

)
, i > R1

, (45)

and the short-run indirect marginal effect

∂E[yit|yt−1,xt,α]

∂xjt
=


0 , i ≤ R1

β ρ0
1−ρ20

, i > R1

, (46)

where j refers to the cohabitant of individual i. The short-run total effect equals the sum of both:

∂E[yit|yt−1,xt,α]

∂xit
+
∂E[yit|yt−1,xt,α]

∂xjt
=


β , i ≤ R1

β 1
1−ρ0 , i > R1

. (47)

For single-earner households, i ≤ R1, there are no within-household spillover effects such that the

total effect equals the direct effect, and both are just given by the coefficient β. The immediate

spillover effect in dual-earner households manifests itself in the nonzero indirect effect, but also

the direct effect is larger than for single earners because of second-round effects. The total effect

for dual-earner households is then obtained by scaling β with the spatial multiplier 1/(1 − ρ0).

We can thus compute a regressor-specific short-run cohabitation premium that individuals obtain

from sharing a household with another worker as the difference of the total effects for dual-earner

and single-earner households:

∂E[yit|yt−1,xt,α; i > R1]

∂xit
+
∂E[yit|yt−1,xt,α; i > R1]

∂xjt
− ∂E[yit|yt−1,xt,α; i ≤ R1]

∂xit

= β
ρ0

1− ρ0
. (48)

Corresponding long-run effects depend on potential restrictions imposed on the parameter ρ1.
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For the unrestricted model, the long-run direct marginal effects are obtained as

∂E[yit|xt,α]

∂xit
=


β 1

1−λ , i ≤ R1

β 1
1−λ

(
1 + (ρ0+ρ1)2

(1−λ)2−(ρ0+ρ1)2

)
, i > R1

, (49)

and the long-run indirect marginal effects become

∂E[yit|xt,α]

∂xjt
=


0 , i ≤ R1

β ρ0+ρ1
(1−λ)2−(ρ0+ρ1)2 , i > R1

. (50)

Adding them up yields the long-run total marginal effects

∂E[yit|xt,α]

∂xit
+
∂E[yit|xt,α]

∂xjt
=


β 1

1−λ , i ≤ R1

β 1
1−λ−ρ0−ρ1 , i > R1

. (51)

Under the restriction ρ1 = −λρ0 the spatial long-run multiplier 1/(1 − λ − ρ0 − ρ1) becomes the

product of the simple long-run multiplier 1/(1−λ) and the short-run spatial multiplier 1/(1−ρ0).

Finally, we can compute the unrestricted long-run cohabitation premium again as the difference

between the dual-earner and single-earner total effects:

∂E[yit|xt,α; i > R1]

∂xit
+
∂E[yit|xt,α; i > R1]

∂xjt
− ∂E[yit|xt,α; i ≤ R1]

∂xit

= β
ρ0 + ρ1

(1− λ)(1− λ− ρ0 − ρ1)
, (52)

which simplifies to [β/(1− λ)] · [ρ0/(1− ρ0)] under the nonlinear restriction ρ1 = −λρ0. Standard

errors for all marginal effects and cohabitation premiums can be obtained with the Delta method.

7.3 Estimation results

Table 4 presents the estimation results for a set of wage equations with different dynamic model

components. All models are nested within the general time-space dynamic panel data model (7) as

outlined in Section 5. In line with the dynamic wage equation derived from the bargaining model

32



in Section 2, I do not consider distributed time or spatial lags of the regressors. Also, to avoid

identification problems I assume absence of spatial error dependence. Thus, β1 = γ0 = γ1 = ρ2 = 0

in all specifications.

[Table 4 about here.]

I compare several restricted versions of the model. The static model does neither control for

time dependence nor for within-household dependence. The space dynamic model adds a spatial

lag of the dependent variable in line with the argumentation that wage rates are correlated among

household members.36 In contrast, the empirical observation of correlated earnings over time

is accommodated in the time dynamic model. For this specification, I assume absence of spatial

dependence both in the dependent variable and the exogenous regressors. Thus, the resulting QML

estimators for the space dynamic and the time dynamic models are those of Lee and Yu (2010b)

and Hsiao et al. (2002), respectively. The time-space dynamic model merges the space dynamic

and the time dynamic models. Besides the unrestricted version, I consider two restrictions on the

spatial time lag, ρ1 = 0 or ρ1 = −λρ0, that both disentangle the time and spatial effects. The latter

is in line with the bargaining model derived above. For the time-space dynamic specifications, I

allow for an unrestricted spatial correlation of the regressors according to Assumption 8, but set the

truncation order to KN = 0 to avoid an overparameterization of the initial observations equation.

This truncation has been shown in Section 6 to yield satisfactory results.

The static model delivers the familiar results. The statistically significantly negative coefficient

of age squared signals a hump-shaped wage-age profile provided that the unidentified linear age

component enters with a positive sign. The aggregate time effects (relative to the initial period)

are all positive and growing over time.37 In the absence of other excluded trending components,

this would indeed imply a positive influence of the linear age component. Moreover, there is a

strongly statistically significant wage premium of about 6.5 percent for jobs covered by a union

contract. The marriage premium of 4.1 percent is statistically significant only at the 10 percent

level, as is the effect of the number of children in the household.

Adding a contemporaneous spatial lag to the model has almost no effect on the remaining

36The unconditional correlation coefficient of the hourly wage rates among cohabitants in the sample is 0.55. For
the corresponding biennial growth rates it is still 0.22.

37To economize on space, the estimates of the industry, regional, and time effects are not reported in the table.
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coefficient estimates even though the spatial lag coefficient is highly statistically significant. The

picture changes when adding a time lag. Both in the pure time dynamic and in the time-space

dynamic models, the time lag coefficient is statistically and economically highly significant. If

interpreted as a speed of convergence, it implies that wage rate deviations from their long-run trend

are reduced by 54 percent within one period (2 years). While the coefficient of union coverage rises

due to the inclusion of the time lag, the effects of the marital status and the presence of children

shrink towards zero and turn statistically insignificant. When comparing the unrestricted time-

space dynamic model to the specification with the nonlinear restriction ρ1 = −λρ0, it is evident that

the point estimate of the unrestricted coefficient of the spatial time lag comes close to the restricted

estimate. Importantly, the restriction reduces the corresponding standard error by factor 2.5 and

turns the spatial time lag statistically significant at the 1 percent level while it is insignificant

without the restriction.38

Concerning the optimal model choice, the time-space dynamic models tend to be preferred.

Both the time lag and the contemporaneous spatial lag are statistically significant predictors of

the wage outcome. A model comparison on the basis of a likelihood ratio test points in the

same direction. We can reject the null hypothesis that the imposed restrictions are valid for the

static, space dynamic, and time dynamic model. However, we cannot reject the two restricted

versions of the time-space dynamic model against the unrestricted model which is evidence that

the underlying dynamics can be characterized by just two instead of three coefficients that capture

the time and spatial effect, respectively. In particular, we cannot reject the time-space dynamic

wage equation with the nonlinear restriction that results from the bargaining model in Section 2.

Also observe that the static model is rejected against any alternative which strongly suggests to

consider dynamic model specifications in the analysis of wage determinants.

For comparison of the different models’ implications, the marginal effects are more meaningful

than pure coefficient estimates. Table 5 presents these effects for dual earners.39 For the static

model, the results are presented under the assumption that the underlying data generating pro-

cess is static as well. In this case, short-run and long-run marginal effects coincide. If the data

generating process is dynamic, the within estimates in static models approximate short-run effects

38The standard error of the estimate for ρ1 = −λρ0 is computed with the Delta method.
39The marginal effect of age is not identified, and a separate effect for age squared is not of interest.
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and the between estimates approximate long-run effects.40 We should then disregard the reported

long-run estimates for the static model, and similarly for the pure space dynamic model, because

the first-difference transformation yields within estimates. The marginal effects from the static

model simply equal the respective coefficient estimates. They are very close to the direct marginal

effects from the space dynamic model. The difference between the total marginal effects is larger

due to the positive indirect effects in the space dynamic model. The latter is highly statistically

significant for union coverage.

[Table 5 about here.]

Stronger differences emerge when we include time dynamics. In the absence of additional

spatial dynamics, the short-run direct and total effects are again equal to the respective coefficient

estimates, while the long-run effects are more than twice as high due to the long-run multiplier,

1/(1 − λ) = 2.19. For marriage and the number of children, the insignificance of the coefficient

estimates transmits into insignificant marginal effects. For union coverage, the results confirm

the preceding argumentation that the within estimates of static models are approximations to

short-run rather than long-run effects.

When we move on to time-space dynamic models that control both for wage persistence over

time and interaction effects among cohabitants, the direct effects remain about the same as in the

pure time dynamic model. The important difference lies again in the statistically significant indirect

effects for job coverage under a union contract. In the short run, this increases the corresponding

total effect by about 0.4 to 0.6 percentage points. In the long run, the difference is even more

pronounced. The total effect is about 1.1 to 2.1 percentage points higher than under ignorance

of within-household spillovers, depending on the restrictions on the spatial time lag. The effects

are largest when we restrict ρ1 = 0, but also under the nonlinear restriction ρ1 = −λρ0 the effects

are slightly higher than with the unrestricted model. More importantly, due to the imprecise

estimation of the spatial time lag coefficient in the latter model the long-run indirect effect turns

statistically insignificant.

For single-earner households the exposition simplifies a lot because they do not benefit from

spillover effects such that the direct and total marginal effects coincide, as reported in Table 6.

40See for example Egger and Pfaffermayr (2004).
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The short-run marginal effects in all models are given by the corresponding coefficient estimates,

and the long-run coefficients are appropriately scaled by the long-run multiplier. For the static

and space dynamic model the qualification applies again that we should not put much emphasis on

long-run effects when we acknowledge the autoregressive nature of the underlying data generating

process. In all models that include time dynamics it is clearly visible that the single-earner marginal

effects are virtually the same.

[Table 6 about here.]

We are now ready to compute the short-run and long-run cohabitation premiums that dual

earners receive from cohabiting with another worker. This is done in Table 7. Clearly, there is

no such premium in the static and the time dynamic model. Under the remaining specifications,

the short-run cohabitation premium for union coverage varies between 0.4 and 0.6 percentage

points. The corresponding long-run premium lies in the range of 1.1 and 2.1 percentage points,

leaving aside the space dynamic model due to the known reasons. Besides the long-run premium

in the unrestricted model, these premiums are statistically significant at the 5 percent level. Their

magnitude is economically meaningful and nonnegligible given a total long-run effect of about 17

to 19 percent.

[Table 7 about here.]

Finally, we can use the coefficient estimates to make inference on the structural parameters

in the bargaining model set out in Section 2. Due to the restriction on the spatial time lag, we

can identify only two of the three parameters θ, φ, and δ. For a given bargaining weight θ, we

can obtain estimates of the semi-elasticities on unemployment benefits, φ, and on intra-household

transfers, δ, as follows:

φ̂ =
1

1− θ
λ̂, (53)

δ̂ =
θ

1− θ
ρ̂0. (54)

For a meaningful range of the bargaining weight, Figure 1 plots the corresponding parameter es-

timates with 95 percent confidence bands based on the coefficient estimates from the restricted

36



time-space dynamic wage equation. For θ ∈ (0, 0.5), such that the employer has the higher bar-

gaining weight, the unemployment benefits semi-elasticity tends to be smaller than unity, although

not statistically significantly different from unity for values of θ between 0.4 and 0.5. As expected,

it is much higher than the semi-elasticity of intra-household transfers that remains close to zero,

although statistically significantly positive as a direct consequence of the statistical significance of

the spatial lag coefficient.

[Figure 1 about here.]

Summarizing the estimation results, we find evidence for wage persistence over time and within-

household spillover effects. On statistical grounds, we have to reject all model specifications that

ignore either or both of the two dynamic model components. On the other side, the completely

unrestricted model seems to be overparameterized as we can neither reject the absence of the

spatial time lag nor a nonlinear restriction on its coefficient. With both specifications we find a

significant cohabitation premium for union coverage both in the short and the long run.

8 Conclusion

The formulation of an unconditional transformed likelihood function for short-T dynamic panel

data models requires a specification of the marginal distribution for the initial observations. The

presence of spatial lags complicates the respective derivations under the assumption that the initial

observations are generated from the same process as the remaining observations. The resulting like-

lihood function involves higher-order spatial lag polynomials. In general, their order can increase

with the sample size which requires a truncation for consistent estimation and admissible finite

sample performance. When appropriate measures are taken to rein the parameter proliferation, the

unconditional transformed likelihood estimator is shown to perform well in finite samples with a

smaller root mean square error of the marginal effects estimates than the competing bias-corrected

conditional likelihood estimator of Yu et al. (2008).41

The derivations simplify considerably by imposing a particular nonlinear restriction on the

41It must be noted that using transformed likelihood-based estimators for short-T dynamic panel data models,
with or without spatial effects, is not without downsides. For example, recent research by Dhaene and Jochmans
(2016), Bun et al. (2017), and Juodis (2018) has revealed potential identification failures due to multimodality of
transformed likelihood estimators when T is small.
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spatial time lag as discussed earlier by Parent and LeSage (2010, 2011, 2012). The same restriction

is also implied by a theoretical bargaining model derived in this paper to rationalize a time-

space dynamic wage equation. The empirical results based on PSID data are in favor of a model

specification that allows for both autoregressive dynamics and within-household spillovers. They

also support the aforementioned nonlinear restriction on the spatial time lag. The rich dynamic

model specification allows to separate long-run from short-run effects, and to split total marginal

effects into direct and indirect marginal effects. Furthermore, the difference between the marginal

effects for single-earner and dual-earner households gives rise to a regressor-specific cohabitation

premium.

Simplifications also occur for particular spatial weights matrices with a finite order of their

minimal polynomial. Such situations may occur for example in socio-economic settings where

individuals interact with others in groups of manageable size while there are no interactions between

groups. The resulting spatial weights matrix has a block-diagonal structure with many repeated

eigenvalues. The finite order of the corresponding spatial lag polynomials also allows to obtain

analytical expressions for the marginal effects as explicit functions of the model parameters.
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A Derivatives of the log-likelihood function

A.1 Unrestricted time-space dynamic model

In the following, I consider the approximation Ω̃ ≈ Ω⊗ IN from Section 3.4, with Ω = σ2
uΩ∗ given

in equation (26). Hsiao et al. (2002) decompose Ω∗−1 = C′D−1C, where

C =



c0 0 . . . 0

c0 c1
...

...
...

. . . 0

c0 c1 . . . cT−1


, D =



c0c1 0 . . . 0

0 c1c2
...

...
. . . 0

0 . . . 0 cT−1cT


,

with cs = 1 + s(τ − 1), s = 0, 1, . . . , T . Define P = D−1/2C, and let p1 and P2..T denote the first

column and the columns 2 to T of P, respectively. Furthermore, G̃ = (p1 ⊗RN )φ(WN )∆Z̃ and

G = (P2..T ⊗RN )∆Z. Then, ∆u′(Ω−1 ⊗ IN )∆u = σ−2
u ∆ũ′∆ũ with

∆ũ = (P⊗ IN )∆u = [P⊗ (RNSN )]ΦNT∆y − G̃θ̃ −Gθ. (55)

The first-order derivatives with respect to θ, θ̃, and σ2
u are given by

∂ lnL
∂θ

=
1

σ2
u

G′∆ũ, (56)

∂ lnL
∂θ̃

=
1

σ2
u

G̃′∆ũ, (57)

∂ lnL
∂σ2

u

= −NT
2σ2

u

+
1

2σ4
u

∆ũ′∆ũ. (58)

Setting them equal to zero yields the following closed-form solutions for given values of ρ0, ρ2, τ ,

and φ1, φ2, . . . , φKN
:

θ̂ =
(
G′M̃G

)−1

G′M̃[P⊗ (RNSN )]ΦNT∆y, (59)

ˆ̃
θ =

(
G̃′MG̃

)−1

G̃′M[P⊗ (RNSN )]ΦNT∆y, (60)
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where M = INT −G(G′G)−1G′, M̃ = INT − G̃(G̃′G̃)−1G̃′, and

σ̂2
u =

1

NT

[
(IT ⊗ SN )∆y −∆Z∗θ̂

∗]′
Φ′NT

(IT ⊗RN )′
(

Ω∗−1 ⊗ IN

)
(IT ⊗RN )ΦNT

[
(IT ⊗ SN )∆y −∆Z∗θ̂

∗]
. (61)

Inserting these expressions back into the log-likelihood function yields a concentrated log-likelihood

function that can be maximized with respect to the remaining parameters. The first-order deriva-

tives for these parameters are given by

∂ lnL
∂ρ0

=
1

σ2
u

(ΦNT∆y)′(IT ⊗RN )′(P⊗WN )′∆ũ− T
N∑
l=1

ωl
1− ρ0ωl

, (62)

∂ lnL
∂ρ2

=
1

σ2
u

[(IT ⊗ SN )∆y −∆Z∗θ∗]
′
Φ′NT (P⊗WN )′∆ũ− T

N∑
l=1

ωl
1− ρ2ωl

, (63)

∂ lnL
∂φk

= − 1

σ2
u

(SN∆y1 −∆Z̃θ̃)′R′N (p1 ⊗Wk
N )′∆ũ +

N∑
l=1

ωkl

1 +
∑KN

h=1 φhω
h
l

, k = 1, 2, . . . ,KN ,

(64)

∂ lnL
∂τ

= − NT

2[1 + T (τ − 1)]
+

1

2σ2
u[1 + T (τ − 1)]2

∆u′
[
(ϑϑ′)⊗ IN

]
∆u, (65)

where ϑ = (T, T − 1, . . . , 1)′. Setting the latter equal to zero yields

τ̂ =
T − 1

T
+

1

σ̂2
uNT

2

[
(IT ⊗ ŜN )∆y −∆Z∗θ̂

∗]′
Φ̂
′
NT

(IT ⊗ R̂N )′
[
(ϑϑ′)⊗ IN

]
(IT ⊗ R̂N )Φ̂NT

[
(IT ⊗ ŜN )∆y −∆Z∗θ̂

∗]
, (66)

which implies a lower bound for τ at (T − 1)/T .

The second-order derivatives are:

∂2 lnL
∂θ∂θ′

= − 1

σ2
u

G′G,
∂2 lnL
∂θ̃∂θ̃

′ = − 1

σ2
u

G̃′G̃,
∂2 lnL
∂θ∂θ̃

′ = − 1

σ2
u

G′G̃,

∂2 lnL
∂θ∂σ2

u

= − 1

σ4
u

G′∆ũ,
∂2 lnL
∂θ̃∂σ2

u

= − 1

σ4
u

G̃′∆ũ,
∂2 lnL
∂(σ2

u)2
=
NT

2σ4
u

− 1

σ6
u

∆ũ′∆ũ,
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and

∂2 lnL
∂ρ2

0

=− 1

σ2
u

(ΦNT∆y)′(IT ⊗RN )′
[
Ω∗−1 ⊗ (W′

NWN )
]

(IT ⊗RN )ΦNT∆y

− T
N∑
l=1

(
ωl

1− ρ0ωl

)2

,

∂2 lnL
∂ρ2

2

=− 1

σ2
u

[(IT ⊗ SN )∆y −∆Z∗θ∗]
′
Φ′NT

[
Ω∗−1 ⊗ (W′

NWN )
]

ΦNT [(IT ⊗ SN )∆y −∆Z∗θ∗]− T
N∑
l=1

(
ωl

1− ρ2ωl

)2

,

∂2 lnL
∂φk1∂φk2

=− 1

σ2
u

(SN∆y1 −∆Z̃θ̃)′R′N

(
p1 ⊗Wk1

N

)′ (
p1 ⊗Wk2

N

)
RN (SN∆y1 −∆Z̃θ̃)

−
N∑
l=1

ωk1+k2
l

(1 +
∑KN

h=1 φhω
h
l )2

, k1, k2 = 1, 2, . . . ,KN ,

∂2 lnL
∂τ2

=
NT 2

2[1 + T (τ − 1)]2
− T

σ2
u[1 + T (τ − 1)]3

∆u′[(ϑϑ′)⊗ IN ]∆u,

∂2 lnL
∂θ∂ρ0

=− 1

σ2
u

G′(P⊗WN )(IT ⊗RN )ΦNT∆y,

∂2 lnL
∂θ̃∂ρ0

=− 1

σ2
u

G̃′(P⊗WN )(IT ⊗RN )ΦNT∆y,

∂2 lnL
∂θ∂ρ2

=− 1

σ2
u

G′(P⊗WN )ΦNT [(IT ⊗ SN )∆y −∆Z∗θ∗]− 1

σ2
u

∆Z′(P2..T ⊗WN )′∆ũ,

∂2 lnL
∂θ̃∂ρ2

=− 1

σ2
u

G̃′(P⊗WN )ΦNT [(IT ⊗ SN )∆y −∆Z∗θ∗]− 1

σ2
u

[φ(WN )∆Z̃]′(p1 ⊗WN )′∆ũ,

∂2 lnL
∂σ2

u∂ρ0
=− 1

σ4
u

(ΦNT∆y)′(IT ⊗RN )′(P⊗WN )′∆ũ,

∂2 lnL
∂σ2

u∂ρ2
=− 1

σ4
u

[(IT ⊗ SN )∆y −∆Z∗θ∗]
′
Φ′NT (P⊗WN )′∆ũ,

∂2 lnL
∂θ∂τ

=− 1

σ2
u[1 + T (τ − 1)]2

∆Z′
[
(ϑ̃ϑ′)⊗ IN

]
∆u,

∂2 lnL
∂θ̃∂τ

=− T

σ2
u[1 + T (τ − 1)]2

∆Z̃′(ϑ′ ⊗ IN )∆u,

∂2 lnL
∂σ2

u∂τ
=− 1

2σ4
u[1 + T (τ − 1)]2

∆u′[(ϑϑ′)⊗ IN ]∆u,

∂2 lnL
∂ρ0∂τ

=− 1

σ2
u[1 + T (τ − 1)]2

(ΦNT∆y)′(IT ⊗RN )′[(ϑϑ′)⊗W′
N ]∆u,

∂2 lnL
∂ρ2∂τ

=− 1

σ2
u[1 + T (τ − 1)]2

[(IT ⊗ SN )∆y −∆Z∗θ∗]
′
Φ′NT [(ϑϑ′)⊗W′

N ]∆u,
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where ϑ̃ = (T − 1, T − 2, . . . , 1)′. Finally,

∂2 lnL
∂θ∂φk

=
1

σ2
u

G′(p1 ⊗Wk
N )RN (SN∆y1 −∆Z̃θ̃),

∂2 lnL
∂θ̃∂φk

=
1

σ2
u

G̃′(p1 ⊗Wk
N )RN (SN∆y1 −∆Z̃θ̃) +

1

σ2
u

(RN∆Z̃)′(p1 ⊗Wk
N )′∆ũ,

∂2 lnL
∂σ2

u∂φk
=

1

σ4
u

(SN∆y1 −∆Z̃θ̃)′R′N (p1 ⊗Wk
N )′∆ũ,

∂2 lnL
∂ρ0∂φk

=
1

σ2
u

(ΦNT∆y)′(IT ⊗RN )′(P⊗WN )′(p1 ⊗Wk
N )RN (SN∆y1 −∆Z̃θ̃)

+
1

σ2
u

(RN∆y1)′(p1 ⊗Wk+1
N )′∆ũ,

∂2 lnL
∂ρ2∂φk

=
1

σ2
u

[(IT ⊗ SN )∆y −∆Z∗θ∗]
′
Φ′NT (P⊗WN )′(p1 ⊗Wk

N )RN (SN∆y1 −∆Z̃θ̃)

+
1

σ2
u

(SN∆y1 −∆Z̃θ̃)′(p1 ⊗Wk+1
N )′∆ũ,

∂2 lnL
∂φk∂τ

=
T

σ2
u[1 + T (τ − 1)]2

(RNSN∆y1)′(ϑ⊗Wk
N )′∆u,

for all k = 1, 2, . . . ,KN , and

∂2 lnL
∂ρ0∂ρ2

=− 1

σ2
u

(ΦNT∆y)′(IT ⊗RN )′
[
Ω∗−1 ⊗ (W′

NWN )
]

ΦNT [(IT ⊗ SN )∆y −∆Z∗θ∗]

− 1

σ2
u

(ΦNT∆y)′(P⊗W2
N )′∆ũ.

A.2 Restricted time-space dynamic model

Again, I make use of the decomposition for Ω∗−1 to obtain

∆ũr = (P⊗ IN )∆ur = [P⊗ (RNSN )]∆y − G̃rθ̃r −GHθr − ψ(p1 ⊗ ιN ), (67)

where G̃r = (p1 ⊗RN )∆Z̃r, and G is defined as before. The first-order derivatives become

∂ lnLr
∂θr

=
1

σ2
u

H′G′∆ũr, (68)

∂ lnLr
∂θ̃r

=
1

σ2
u

G̃′r∆ũr, (69)

∂ lnLr
∂σ2

u

= −NT
2σ2

u

+
1

2σ4
u

∆ũ′r∆ũr, (70)
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and

∂ lnLr
∂ψ

=
1

σ2
u

(p1 ⊗ ιN )′∆ũr. (71)

Similar to the unrestricted model, we can obtain closed-form solutions for these parameters for

given values of ρ0, κ, and τ that can be used to set up a concentrated log-likelihood function. The

first-order derivatives for the remaining parameters are given by

∂ lnLr
∂ρ0

=
1

σ2
u

[
(P⊗WN )(IT ⊗RN )∆y + GḢρθr

]′
∆ũr − T

N∑
l=1

ωl
1− ρ0ωl

, (72)

∂ lnLr
∂ρ2

=
1

σ2
u

[(IT ⊗ SN )∆y −∆Z∗rθ
∗
r ]
′
(P⊗WN )′∆ũr − T

N∑
l=1

ωl
1− ρ2ωl

, (73)

∂ lnLr
∂κ

=
1

σ2
u

θ′rḢ
′
κG
′∆ũr, (74)

where

Ḣρ =


0 0

−1 0

0 0

 , Ḣκ =

0 0

0 I2

 ,

and

∂ lnLr
∂τ

= − NT

2[1 + T (τ − 1)]
+

1

2σ2
u[1 + T (τ − 1)]2

∆u′r
[
(ϑϑ′)⊗ IN

]
∆ur. (75)

The second-order derivatives become

∂2 lnLr
∂θr∂θ
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B Conditional transformed likelihood estimation

Modeling the initial observations aims at obtaining unbiased estimators in dynamic panel data

models. As an alternative, Yu et al. (2008) derive a bias reduction for the transformed likelihood

estimator of time-space dynamic panel data models conditional on ∆y1. The conditional log-

likelihood function for the first-differenced model, for simplicity assuming ρ2 = 0, is given by

lnLc = −N(T − 1)

2
ln(2πσ2

u)− N

2
ln(T )− 1

2
∆u′c(Ω

−1
c ⊗ IN )∆uc + (T − 1)

N∑
l=1

ln(1− ρ0ωl), (76)

where ∆uc = (∆u2,∆u3, . . . ,∆uT ) and

Ωc = σ2
u
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. (77)

Let θ̂c = (ρ̂0, λ̂, ρ̂1, β̂0, γ̂0, β̂1, γ̂1, σ
2
u)′ be the corresponding conditional quasi-maximum likelihood

estimator. The bias-corrected estimator of Yu et al. (2008) can then be obtained as

θ̂bc = θ̂c +
1

T
Σ̂−1
θ ξ(θ̂c), (78)

where Σ̂θ is the inverse negative Hessian matrix evaluated at θ̂c, and

ξ(θ̂c) =



1
N tr

(
WNS−1

N (λ̂S̃−1
N + ρ̂1WN S̃−1

N + IN )
)

1
N tr

(
S̃−1
N

)
1
N tr

(
WN S̃−1

N

)
0

1
2σ̂2

u


, (79)

where S̃N = [(1−λ)IN − (ρ0 +ρ1)WN ]. In the case of the spatial weights matrix WN = IR⊗BM

introduced in Section 3.2, the inverses of SN and S̃N can be easily obtained with formula (11).
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C Detailed data description

Table 8 lists the variables extracted from the PSID for the years 2001 to 2011. The interview

number is used to link cohabiting workers to each other, and the relation to head allows to assign

labor market outcomes from the family data set to the respective household head, who is always

male in the PSID, or “wife” (legal wife or female cohabitant). Because the estimation methodology

relies on constant spatial weights over time, I have to dismiss all individuals whose partner in the

same family unit changed during the analyzed time horizon.

[Table 8 about here.]

The dependent variable in the regression analysis is the natural logarithm of the hourly wage

rate for the current main job. Only individuals that continuously earned at least the federal

minimum wage in each year are kept in the data set. The respective minimum wage was 5.15 USD

in the years 2001 to 2009, and 7.25 USD in 2011.42

The age of the individuals is constructed as the current year minus the year of birth. Some

apparently miscoded data points have been corrected to ensure that age is linearly growing with

time. The main industry for the current job based on the 3-digit industry code from the 2000

census of population and housing is used to create three industry dummy variables: primary sector

(codes 17–77), manufacturing (codes 107-399), and public administration (codes 937–987). The

reference group are thus the remaining services industries. Regional dummy variables are created

for the northeast, north central, and southern part of the United States. The western part serves

as the reference group.

The set of independent variables further includes a dummy variable for union coverage of the

current job, the marital status, and the number of children under the age of 18 living in the same

family unit. Summary statistics for the variables used in the estimation of the time-space dynamic

wage equation are presented in Table 9. The number of data points is 4,428 that form a balanced

panel with 738 individuals observed at 6 time points.

[Table 9 about here.]

42The wage data for some individuals showed extreme jumps potentially due to miscoding. To avoid distortions
due to such outliers, I dropped all individuals whose standard deviation of the hourly wage rate exceeded 30.
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Figures

Figure 1: Implied parameter estimates for the wage bargaining model
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Tables

Table 1: Simulation results: coefficients ρy0 and ρy1

ρy0 R 10 20 50

M Estimator KN Bias RMSE Bias RMSE Bias RMSE

2 ρy1 = −λyρy0 (0, 1) -0.0106 0.0533 -0.0036 0.0346 -0.0012 0.0213

unrestricted (0, 0) -0.0132 0.0524 -0.0056 0.0338 -0.0019 0.0211

unrestricted (1, 1) -0.0028 0.0357 -0.0004 0.0216

bias-corrected -0.0007 0.0524 -0.0006 0.0351 0.0002 0.0223

5 ρy1 = −λyρy0 (0, 1) -0.0071 0.0547 -0.0045 0.0373 -0.0009 0.0237

unrestricted (0, 0) -0.0121 0.0539 -0.0061 0.0368 -0.0016 0.0234

unrestricted (1, 1) -0.0678 0.0907 -0.0131 0.0403 -0.0033 0.0244

bias-corrected -0.0063 0.0559 -0.0042 0.0386 -0.0000 0.0245

10 ρy1 = −λyρy0 (0, 1) -0.0085 0.0578 -0.0053 0.0390 -0.0016 0.0245

unrestricted (0, 0) -0.0131 0.0572 -0.0069 0.0388 -0.0021 0.0239

unrestricted (1, 1) -0.0637 0.0893 -0.0146 0.0422 -0.0052 0.0251

bias-corrected -0.0101 0.0598 -0.0045 0.0404 -0.0013 0.0250

20 ρy1 = −λyρy0 (0, 1) -0.0095 0.0579 -0.0047 0.0389 -0.0012 0.0255

unrestricted (0, 0) -0.0130 0.0584 -0.0063 0.0377 -0.0013 0.0248

unrestricted (1, 1) -0.0600 0.0867 -0.0149 0.0430 -0.0050 0.0265

bias-corrected -0.0093 0.0598 -0.0049 0.0414 -0.0009 0.0266

50 ρy1 = −λyρy0 (0, 1) -0.0073 0.0566 -0.0034 0.0392 -0.0009 0.0261

unrestricted (0, 0) -0.0105 0.0561 -0.0051 0.0382 -0.0013 0.0254

unrestricted (1, 1) -0.0564 0.0843 -0.0136 0.0434 -0.0048 0.0272

bias-corrected -0.0077 0.0595 -0.0040 0.0413 -0.0007 0.0273

ρy1 R 10 20 50

M Estimator KN Bias RMSE Bias RMSE Bias RMSE

2 ρy1 = −λyρy0 (0, 1) 0.0042 0.0292 0.0012 0.0180 0.0007 0.0108

unrestricted (0, 0) -0.0204 0.0824 -0.0063 0.0493 -0.0015 0.0313

unrestricted (1, 1) -0.0026 0.0522 0.0012 0.0320

bias-corrected 0.0054 0.0778 0.0038 0.0533 0.0028 0.0348

5 ρy1 = −λyρy0 (0, 1) 0.0033 0.0240 0.0020 0.0164 0.0004 0.0104

unrestricted (0, 0) -0.0116 0.0733 -0.0040 0.0485 -0.0007 0.0305

unrestricted (1, 1) -0.1286 0.1548 -0.0254 0.0571 -0.0065 0.0323

bias-corrected 0.0007 0.0794 0.0005 0.0540 0.0031 0.0354

10 ρy1 = −λyρy0 (0, 1) 0.0036 0.0242 0.0021 0.0161 0.0007 0.0103

unrestricted (0, 0) -0.0077 0.0752 -0.0016 0.0509 -0.0001 0.0313

unrestricted (1, 1) -0.1090 0.1360 -0.0264 0.0592 -0.0084 0.0334

bias-corrected 0.0001 0.0819 0.0038 0.0581 0.0024 0.0351

20 ρy1 = −λyρy0 (0, 1) 0.0038 0.0236 0.0019 0.0160 0.0005 0.0105

unrestricted (0, 0) -0.0064 0.0736 -0.0005 0.0515 -0.0011 0.0312

unrestricted (1, 1) -0.0983 0.1272 -0.0281 0.0605 -0.0106 0.0339

bias-corrected 0.0021 0.0834 0.0036 0.0575 0.0006 0.0352

50 ρy1 = −λyρy0 (0, 1) 0.0030 0.0228 0.0014 0.0159 0.0004 0.0105

unrestricted (0, 0) -0.0085 0.0722 -0.0036 0.0493 0.0009 0.0330

unrestricted (1, 1) -0.0933 0.1216 -0.0318 0.0600 -0.0087 0.0346

bias-corrected -0.0008 0.0817 0.0000 0.0564 0.0031 0.0363

Note: The first three estimators are described in Sections 4 and 5. The first number of the truncation order KN

refers to the polynomials πl(WN ) and the second number to φ(WN ). The fourth estimator is the bias-corrected

conditional transformed likelihood estimator of Yu et al. (2008).
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Table 2: Simulation results: coefficients λy and β

λy R 10 20 50

M Estimator KN Bias RMSE Bias RMSE Bias RMSE

2 ρy1 = −λyρy0 (0, 1) -0.0000 0.0907 0.0014 0.0594 -0.0011 0.0336

unrestricted (0, 0) 0.0080 0.0930 0.0024 0.0616 -0.0012 0.0354

unrestricted (1, 1) 0.0025 0.0610 -0.0019 0.0353

bias-corrected -0.0099 0.0784 -0.0038 0.0564 -0.0035 0.0351

5 ρy1 = −λyρy0 (0, 1) -0.0021 0.0491 -0.0009 0.0340 -0.0003 0.0211

unrestricted (0, 0) -0.0017 0.0495 -0.0013 0.0345 -0.0006 0.0214

unrestricted (1, 1) 0.0508 0.0793 0.0031 0.0349 0.0004 0.0214

bias-corrected -0.0060 0.0487 -0.0030 0.0340 -0.0019 0.0212

10 ρy1 = −λyρy0 (0, 1) -0.0008 0.0342 0.0002 0.0241 -0.0001 0.0152

unrestricted (0, 0) -0.0014 0.0345 -0.0002 0.0242 -0.0003 0.0153

unrestricted (1, 1) 0.0322 0.0485 0.0024 0.0245 0.0004 0.0154

bias-corrected -0.0031 0.0340 -0.0015 0.0240 -0.0014 0.0152

20 ρy1 = −λyρy0 (0, 1) 0.0002 0.0242 -0.0003 0.0173 0.0000 0.0112

unrestricted (0, 0) -0.0001 0.0242 -0.0005 0.0172 -0.0000 0.0112

unrestricted (1, 1) 0.0237 0.0343 0.0009 0.0173 0.0003 0.0112

bias-corrected -0.0015 0.0239 -0.0017 0.0169 -0.0010 0.0111

50 ρy1 = −λyρy0 (0, 1) -0.0000 0.0153 0.0000 0.0112 -0.0000 0.0071

unrestricted (0, 0) -0.0002 0.0153 -0.0000 0.0112 -0.0001 0.0071

unrestricted (1, 1) 0.0158 0.0221 0.0006 0.0112 0.0000 0.0071

bias-corrected -0.0013 0.0151 -0.0010 0.0111 -0.0011 0.0071

β R 10 20 50

M Estimator KN Bias RMSE Bias RMSE Bias RMSE

2 ρy1 = −λyρy0 (0, 1) 0.0045 0.0795 0.0015 0.0550 0.0000 0.0331

unrestricted (0, 0) 0.0063 0.0773 0.0025 0.0553 0.0005 0.0329

unrestricted (1, 1) 0.0016 0.0550 -0.0001 0.0329

bias-corrected 0.0025 0.0767 0.0010 0.0547 -0.0002 0.0329

5 ρy1 = −λyρy0 (0, 1) -0.0026 0.0496 -0.0000 0.0339 0.0003 0.0218

unrestricted (0, 0) -0.0017 0.0492 0.0004 0.0338 0.0005 0.0219

unrestricted (1, 1) 0.0015 0.0498 0.0011 0.0338 0.0007 0.0219

bias-corrected -0.0023 0.0491 0.0002 0.0337 0.0004 0.0218

10 ρy1 = −λyρy0 (0, 1) -0.0002 0.0340 0.0009 0.0250 -0.0005 0.0160

unrestricted (0, 0) 0.0005 0.0339 0.0012 0.0251 -0.0004 0.0160

unrestricted (1, 1) 0.0009 0.0342 0.0016 0.0251 -0.0002 0.0160

bias-corrected 0.0004 0.0339 0.0011 0.0251 -0.0004 0.0159

20 ρy1 = −λyρy0 (0, 1) 0.0010 0.0251 0.0002 0.0166 -0.0001 0.0112

unrestricted (0, 0) 0.0012 0.0250 0.0003 0.0166 -0.0000 0.0112

unrestricted (1, 1) 0.0005 0.0251 0.0004 0.0167 0.0001 0.0112

bias-corrected 0.0012 0.0250 0.0003 0.0166 0.0000 0.0111

50 ρy1 = −λyρy0 (0, 1) -0.0005 0.0161 -0.0001 0.0112 -0.0002 0.0070

unrestricted (0, 0) -0.0004 0.0161 -0.0000 0.0112 -0.0002 0.0070

unrestricted (1, 1) -0.0012 0.0161 0.0001 0.0112 -0.0002 0.0070

bias-corrected -0.0003 0.0160 0.0001 0.0112 -0.0001 0.0070

Note: The first three estimators are described in Sections 4 and 5. The first number of the truncation order KN

refers to the polynomials πl(WN ) and the second number to φ(WN ). The fourth estimator is the bias-corrected

conditional transformed likelihood estimator of Yu et al. (2008).
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Table 3: Simulation results: marginal effects

short-run direct short-run indirect short-run total

Estimator KN Bias RMSE Bias RMSE Bias RMSE

ρy1 = −λyρy0 (0, 1) 0.0000 0.0339 -0.0006 0.0123 -0.0006 0.0415

unrestricted (0, 0) 0.0003 0.0338 -0.0009 0.0123 -0.0006 0.0413

unrestricted (1, 1) 0.0001 0.0337 -0.0002 0.0124 -0.0002 0.0413

bias-corrected 0.0000 0.0337 0.0000 0.0127 0.0001 0.0414

long-run direct long-run indirect long-run total

Estimator KN Bias RMSE Bias RMSE Bias RMSE

ρy1 = −λyρy0 (0, 1) 0.0008 0.0702 -0.0009 0.0221 -0.0000 0.0852

unrestricted (0, 0) 0.0016 0.0705 -0.0053 0.0455 -0.0037 0.0953

unrestricted (1, 1) 0.0023 0.0705 0.0004 0.0478 0.0027 0.0975

bias-corrected 0.0017 0.0705 0.0029 0.0544 0.0045 0.1017

Note: The first three estimators are described in Sections 4 and 5. The first number of the truncation

order KN refers to the polynomials πl(WN ) and the second number to φ(WN ). The fourth estimator

is the bias-corrected conditional transformed likelihood estimator of Yu et al. (2008). The sample size is

R = 50 and M = 2.

Table 4: Estimation results: coefficient estimates

ln(wage)i,t static space dynamic time dynamic time-space dynamic

λ = ρ0 = ρ1 = 0 λ = ρ1 = 0 ρ0 = ρ1 = 0 ρ1 = 0 ρ1 = −λρ0 unrestricted

ln(wage)i,t−1 0.5432 0.5413 0.5429 0.5429

(0.0241)*** (0.0240)*** (0.0241)*** (0.0241)***

ln(wage)j,t 0.0732 0.0503 0.0704 0.0717

(0.0240)*** (0.0211)** (0.0264)*** (0.0276)***

ln(wage)j,t−1 -0.0382 -0.0435

(0.0144)*** (0.0361)

age2i,t -0.0002 -0.0002 0.0000 0.0000 0.0000 0.0000

(0.0000)*** (0.0000)*** (0.0000) (0.0000) (0.0000) (0.0000)

unioni,t 0.0651 0.0652 0.0778 0.0780 0.0779 0.0778

(0.0122)*** (0.0122)*** (0.0131)*** (0.0131)*** (0.0131)*** (0.0131)***

marriagei,t 0.0411 0.0418 0.0119 0.0123 0.0124 0.0124

(0.0222)* (0.0222)* (0.0247) (0.0247) (0.0247) (0.0247)

childreni,t 0.0070 0.0070 0.0027 0.0027 0.0027 0.0027

(0.0037)* (0.0037)* (0.0044) (0.0044) (0.0044) (0.0044)

log likelihood 1466.07 1470.69 1958.87 1961.70 1962.42 1962.43

likelihood ratio χ2
39 = 992.72*** χ2

38 = 983.48*** χ2
2 = 7.12** χ2

1 = 1.45 χ2
1 = 0.03

* p < 0.1; ** p < 0.05; *** p < 0.01

Note: Variables are indexed with unit and time period, where j refers to the cohabitant. All regressions include

industry, region, and time dummies. The models are estimated with the unconditional transformed QML estimator

proposed in this paper. Standard errors are reported in parentheses. The likelihood ratio test statistics are computed

as 2(lnL − lnL0), where lnL refers to the log-likelihood value of the unrestricted time-space dynamic model and

lnL0 to that of the respective restricted model.
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Table 5: Estimation results: marginal effects for dual-earners

ln(wage) static space dynamic time dynamic time-space dynamic

λ = ρ0 = ρ1 = 0 λ = ρ1 = 0 ρ0 = ρ1 = 0 ρ1 = 0 ρ1 = −λρ0 unrestricted

short-run direct effects

union 0.0651 0.0656 0.0778 0.0782 0.0782 0.0782

(0.0122)*** (0.0123)*** (0.0131)*** (0.0132)*** (0.0132)*** (0.0132)***

marriage 0.0411 0.0420 0.0119 0.0124 0.0124 0.0124

(0.0222)* (0.0223)* (0.0247) (0.0248) (0.0248) (0.0248)

children 0.0070 0.0071 0.0027 0.0027 0.0027 0.0027

(0.0037)* (0.0038)* (0.0044) (0.0044) (0.0044) (0.0044)

short-run indirect effects

union 0.0048 0.0039 0.0055 0.0056

(0.0018)*** (0.0018)** (0.0023)** (0.0024)**

marriage 0.0031 0.0006 0.0009 0.0009

(0.0019) (0.0013) (0.0018) (0.0018)

children 0.0005 0.0001 0.0002 0.0002

(0.0003) (0.0002) (0.0003) (0.0003)

short-run total effects

union 0.0651 0.0704 0.0778 0.0821 0.0838 0.0838

(0.0122)*** (0.0133)*** (0.0131)*** (0.0140)*** (0.0143)*** (0.0143)***

marriage 0.0411 0.0451 0.0119 0.0130 0.0133 0.0133

(0.0222)* (0.0240)* (0.0247) (0.0260) (0.0266) (0.0266)

children 0.0070 0.0076 0.0027 0.0029 0.0029 0.0029

(0.0037)* (0.0040)* (0.0044) (0.0046) (0.0047) (0.0047)

long-run direct effects

union 0.0651 0.0656 0.1702 0.1721 0.1712 0.1709

(0.0122)*** (0.0123)*** (0.0302)*** (0.0305)*** (0.0303)*** (0.0303)***

marriage 0.0411 0.0420 0.0260 0.0272 0.0272 0.0272

(0.0222)* (0.0223)* (0.0542) (0.0545) (0.0543) (0.0543)

children 0.0070 0.0071 0.0059 0.0060 0.0060 0.0060

(0.0037)* (0.0038)* (0.0096) (0.0097) (0.0096) (0.0096)

long-run indirect effects

union 0.0048 0.0189 0.0121 0.0106

(0.0018)*** (0.0089)** (0.0050)** (0.0107)

marriage 0.0031 0.0030 0.0019 0.0017

(0.0019) (0.0061) (0.0039) (0.0038)

children 0.0005 0.0007 0.0004 0.0004

(0.0003) (0.0011) (0.0007) (0.0007)

long-run total effects

union 0.0651 0.0704 0.1702 0.1910 0.1832 0.1815

(0.0122)*** (0.0133)*** (0.0302)*** (0.0354)*** (0.0328)*** (0.0343)***

marriage 0.0411 0.0451 0.0260 0.0302 0.0291 0.0289

(0.0222)* (0.0240)* (0.0542) (0.0605) (0.0581) (0.0576)

children 0.0070 0.0076 0.0059 0.0067 0.0064 0.0063

(0.0037)* (0.0040)* (0.0096) (0.0107) (0.0103) (0.0102)

* p < 0.1; ** p < 0.05; *** p < 0.01

Note: All regressions include industry, region, and time dummies. The models are estimated with the uncon-

ditional transformed QML estimator proposed in this paper. Standard errors are computed with the Delta

method and reported in parentheses. The formulas for the short-run marginal effects are equations (45) to

(47), and for the long-run marginal effects equations (49) to (51).
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Table 6: Estimation results: marginal effects for single-earners

ln(wage) static space dynamic time dynamic time-space dynamic

λ = ρ0 = ρ1 = 0 λ = ρ1 = 0 ρ0 = ρ1 = 0 ρ1 = 0 ρ1 = −λρ0 unrestricted

short-run effects

union 0.0651 0.0652 0.0778 0.0780 0.0779 0.0778

(0.0122)*** (0.0122)*** (0.0131)*** (0.0131)*** (0.0131)*** (0.0131)***

marriage 0.0411 0.0418 0.0119 0.0123 0.0124 0.0124

(0.0222)* (0.0222)* (0.0247) (0.0247) (0.0247) (0.0247)

children 0.0070 0.0070 0.0027 0.0027 0.0027 0.0027

(0.0037)* (0.0037)* (0.0044) (0.0044) (0.0044) (0.0044)

long-run effects

union 0.0651 0.0652 0.1702 0.1701 0.1703 0.1703

(0.0122)*** (0.0122)*** (0.0302)*** (0.0300)*** (0.0301)*** (0.0301)***

marriage 0.0411 0.0418 0.0260 0.0269 0.0271 0.0271

(0.0222)* (0.0222)* (0.0542) (0.0539) (0.0540) (0.0540)

children 0.0070 0.0070 0.0059 0.0059 0.0059 0.0059

(0.0037)* (0.0037)* (0.0096) (0.0095) (0.0096) (0.0096)

* p < 0.1; ** p < 0.05; *** p < 0.01

Note: All regressions include industry, region, and time dummies. The models are estimated with the uncon-

ditional transformed QML estimator proposed in this paper. Standard errors are computed with the Delta

method and reported in parentheses. The formulas for the marginal effects are equations (47) and (51).

Table 7: Estimation results: cohabitation premiums

ln(wage) static space dynamic time dynamic time-space dynamic

λ = ρ0 = ρ1 = 0 λ = ρ1 = 0 ρ0 = ρ1 = 0 ρ1 = 0 ρ1 = −λρ0 unrestricted

short-run premiums

union 0.0052 0.0041 0.0059 0.0060

(0.0021)** (0.0020)** (0.0026)** (0.0027)**

marriage 0.0033 0.0007 0.0009 0.0010

(0.0221) (0.0013) (0.0019) (0.0020)

children 0.0006 0.0001 0.0002 0.0002

(0.0004) (0.0002) (0.0003) (0.0003)

long-run premiums

union 0.0052 0.0210 0.0129 0.0112

(0.0021)** (0.0107)** (0.0057)** (0.0120)

marriage 0.0033 0.0033 0.0021 0.0018

(0.0221) (0.0068) (0.0042) (0.0040)

children 0.0006 0.0007 0.0005 0.0004

(0.0004) (0.0012) (0.0007) (0.0008)

* p < 0.1; ** p < 0.05; *** p < 0.01

Note: All regressions include industry, region, and time dummies. The models are estimated with the uncon-

ditional transformed QML estimator proposed in this paper. Standard errors are computed with the Delta

method and reported in parentheses. The formulas for the cohabitation premiums are equations (48) and (52).
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Table 8: PSID variable index

2001 2003 2005 2007 2009 2011

wage head ER17235 ER21159 ER25148 ER36153 ER42188 ER47501

wife ER17805 ER21409 ER25406 ER36411 ER42440 ER47758

year of birth ER33606 ER33706 ER33806 ER33906 ER34006 ER34106

union head ER17224 ER21150 ER25138 ER36143 ER42178 ER47491

wife ER17794 ER21400 ER25396 ER36401 ER42430 ER47748

marriage ER17024 ER21023 ER25023 ER36023 ER42023 ER47323

children ER17016 ER21020 ER25020 ER36020 ER42020 ER47320

industry head ER17227 ER21146 ER25128 ER36133 ER42168 ER47480

wife ER17797 ER21396 ER25386 ER36391 ER42420 ER47737

region ER20376 ER24143 ER28042 ER41032 ER46974 ER52398

interview number ER33601 ER33701 ER33801 ER33901 ER34001 ER34101

relation to head ER33603 ER33703 ER33803 ER33903 ER34003 ER34103

Table 9: Summary statistics

mean std. dev. min. max.

ln(wage) 2.7152 0.4444 1.6390 5.1240

age 46.3117 10.1165 20 85

union 0.2676 0.4428 0 1

marriage 0.7378 0.4399 0 1

children 0.9266 1.0988 0 8

primary sector 0.0788 0.2695 0 1

manufacturing 0.1696 0.3753 0 1

public administration 0.0357 0.1855 0 1

northeast 0.1222 0.3275 0 1

north central 0.2841 0.4510 0 1

south 0.3839 0.4864 0 1

59


	Introduction
	Time-space dynamic wage equation
	Intra-household wage spillovers
	Employer-employee wage bargaining model
	Restriction on the spatial time lag

	Time-space dynamic panel data model
	Unrestricted model
	Spatial weights matrix
	Model transformation and initial observations
	Covariance matrix

	Quasi-maximum likelihood estimation
	Restricted model specifications
	Restricted time-space dynamic panel data model
	Pure time dynamic panel data model
	Pure space dynamic panel data model

	Monte Carlo simulation
	Simulation design
	Simulation results

	Application
	Data description
	Marginal effects and the cohabitation premium
	Estimation results

	Conclusion
	Derivatives of the log-likelihood function
	Unrestricted time-space dynamic model
	Restricted time-space dynamic model

	Conditional transformed likelihood estimation
	Detailed data description

