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Appendix B One-stage GMM estimation

This appendix serves as a supplement to Section 3 in the main paper.

B.1 GMM estimation of linear dynamic panel data models

For the static model with strictly exogenous regressors xit, Hausman and Taylor (1981)

propose an instrumental variable estimator that uses deviations from their within-group

means, xit−x̄i, as instruments for the regressors xit, and the within-group means x̄1i as in-

struments for f2i.
1 The time-invariant regressors f1i serve as their own instruments. We can

extend this estimator to accommodate the dynamic setup by adding an appropriate instru-

ment for the lagged dependent variable. For example, Anderson and Hsiao (1981) propose

to use yi,t−2 or ∆yi,t−2 as an instrument for ∆yi,t−1. With yi,(−2) = (yi0, yi1, . . . , yi,T−2)′,

the resulting estimator satisfies the moment conditions E[Z′iHiei] = 0 with

Zi =


yi,(−2) 0 0 0

0 Xi 0 0

0 0 X1i F1i

 , and Hi =


Di

Qi

Pi

 ,

∗Corresponding author: University of Exeter Business School, Department of Economics, Streatham
Court, Rennes Drive, Exeter, EX4 4PU, UK. E-mail: S.Kripfganz@exeter.ac.uk
†European Central Bank, SSM Risk Analysis. E-mail: claudia.schwarz@ecb.int
1To improve on the efficiency of the estimator, Amemiya and MaCurdy (1986) propose to use all

time periods of x1it separately as instruments instead of the within-group means. Breusch et al. (1989)
additionally suggest using the deviation of each individual time period from the within-group means as
separate instruments.
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for the (T − 1) × T first-difference transformation matrix Di = [(0, IT−1) − (IT−1,0)],

and the T × T idempotent and symmetric projection matrices Pi = ιT (ι′T ιT )−1ι′T and

Qi = IT − Pi, where Pi and Qi transform the observations into within-group means

and deviations from within-group means, respectively. Importantly, both Di and Qi

are orthogonal to time-invariant variables. Due to the block-diagonal structure of Zi,

only the instruments (X1i,F1i) in the lower-right block of Zi are of use to identify γ.

Therefore, as in the static model of Hausman and Taylor (1981), a necessary condition for

the identification of all coefficients (θ′,γ ′)′ with this extended estimator is Kx1 ≥ Kf2.

Since the above estimator does not exploit all model-implied moment conditions, it will

be inefficient. Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and

Bond (1998) derive additional linear moment conditions for the model in first differences

and in levels. Ahn and Schmidt (1995) add further nonlinear moment conditions valid

under absence of serial correlation and under homoskedasticity of uit. We present the

moment conditions in Appendix A. For the model in first differences, E[Z′diDiei] = 0, and

in levels, E[Z′liei] = 0, the moment conditions can be combined by defining

Zi =

Zdi 0

0 Zli

 , and Hi =

Di

IT

 .

With the full set of linear moment conditions, the instrument matrix for the first-differenced

model is Zdi = (Zdyi,Zdxi, IT−1⊗ f ′i), where Zdyi = diag(z′dyi2, z
′
dyi3, . . . , z

′
dyiT ) and Zdxi =

diag(z′dxi2, z
′
dxi3, . . . , z

′
dxiT ), and where zdyit = (yi0, yi1, . . . , yi,t−2)′. Moreover, zdxit =

(x′i0,x
′
i1, . . . ,x

′
iT )′ under strict exogeneity, while zdxit = (x′i0,x

′
i1, . . . ,x

′
i,t−1)′ for prede-

termined regressors. For the untransformed model, Zli = (Zlyi,Zlx1i,Zlx2i,F1i), with

Zlyi = (0,diag(∆yi1,∆yi2, . . . ,∆yi,T−1))′, Zlx1i = ((x1i0,0)′, diag(x′1i1,x
′
1i2, . . . ,x

′
1iT )),

and Zlx2i = diag(∆x′2i1,∆x′2i2, . . . ,∆x′2iT ).

We can derive the GMM estimator as a minimum distance estimator based on the

sample moments N−1Z′He:

(
θ̃
′
, γ̃ ′
)′

= arg min
(b′1,b

′
2)′

(
1

N
Z′H(y −Wyxb1 − Fb2)

)′
VN

(
1

N
Z′H(y −Wyxb1 − Fb2)

)
.

The closed-form solution for the whole parameter vector is given in equation (5), provided
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that W′
yxfH

′ZVNZ′HWyxf is nonsingular. Decompose the weighting matrix VN =

LL′, and define y∗ = L′Z′Hy, W∗
yx = L′Z′HWyx, and F∗ = L′Z′HF. The following

partitioned regression result is useful:

θ̃ = (W∗
yx
′QFW∗

yx)−1W∗
yx
′QFy∗, (B.1)

γ̃ = (F∗′F∗)−1F∗′
(
y∗ −W∗

yxθ̃
)
, (B.2)

where QF = IKz − F∗(F∗′F∗)−1F∗′ is an idempotent and symmetric projection matrix.

From Proposition 1, an unrestricted estimate of the variance matrix Ω of the joint

asymptotic distribution can be obtained as Ω̃ = 1
N

∑N
i=1 ϕ̃iϕ̃

′
i, based on the estimated

influence function of the one-stage GMM estimator:

ϕ̃i = N
(
W′

yxfH
′ZVNZ′HWyxf

)−1
W′

yxfH
′ZVN (Z′iHiẽi), (B.3)

where ẽi = yi −Wyxiθ̃ − Fiγ̃.

B.2 Asymptotic distribution of the GMM estimator

In the following, we present a sufficient set of assumptions for the identification of the co-

efficients and regularity conditions for consistency and asymptotic normality of the GMM

estimator. We restrict the exposition again to linear moment conditions. For notational

convenience, denote the moment vector by mi(b1,b2) = Z′iHi(yi −Wyxib1 −Fib2) such

that mi(θ,γ) = Z′iHiei. The corresponding negative gradient is Si = Z′iHiWyxfi. The

latter is independent of the parameters due to the restriction to linear moment conditions.

Assumption B.1: The parameter space is the convex set Θ = (−1, 1)×RKx ×RKf with

(θ′,γ ′) ∈ Θ.

Assumption B.2: A weak law of large numbers holds element-wise for the moment vector

such that plimN→∞N
−1
∑N

i=1 mi(b1,b2) = m(b1,b2) for all (b′1,b
′
2)′ ∈ Θ.

Assumption B.3: The moment conditions E[mi(θ,γ)] = 0 are satisfied.

Assumption B.4: A weak law of large numbers holds element-wise for the negative gra-

dient of the moment vector such that plimN→∞N
−1
∑N

i=1 Si = S.
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Assumption B.5: A weak law of large numbers holds element-wise for the weighting

matrix VN such that plimN→∞VN = V is positive semi-definite and VS has full column

rank.

Lemma B.1: Under Assumptions B.1 to B.5, all parameters are identified.

Proof. By Assumptions B.2 and B.5 and by Slutsky’s theorem, the GMM criterion func-

tion converges in probability to m(b1,b2)′Vm(b1,b2) ≥ 0 for all (b′1,b
′
2)′ ∈ Θ. Denote

the corresponding minimizer by (θ̃
′
∞, γ̃

′
∞)′. By Assumptions B.2 to B.4, the first-order

condition is S′Vm(θ̃∞, γ̃∞) = 0 with m(θ̃∞, γ̃∞) = S[(θ′,γ ′)′− (θ̃
′
∞, γ̃

′
∞)′]. By Assump-

tion B.5, S′VS is nonsingular. Hence, with Assumption B.1, (θ̃
′
∞, γ̃

′
∞)′ = (θ′,γ ′)′ is the

unique minimizer of the asymptotic GMM criterion function on Θ.

Assumption B.6: The moment vector evaluated at the population values, mi(θ,γ), is

independently distributed across i with supi,N E[‖mi(θ,γ)‖2+δ] <∞ for some δ > 0, and

where limN→∞N
−1
∑N

i=1E[mi(θ,γ)mi(θ,γ)′] = Ξ is a positive-definite matrix.2

Lemma B.2: Under Assumptions B.3 and B.6, N−
1
2
∑N

i=1 mi(θ,γ)
d→ N (0,Ξ).

Proof. Let c ∈ RKz with c′c = 1. By Assumption B.6 and the Cauchy-Schwarz inequality,

supi,N E[|c′mi(θ,γ)|2+δ] ≤ supi,N E[‖mi(θ,γ)‖2+δ] <∞. With Ξ being positive definite,

0 < limN→∞N
−1
∑N

i=1E[c′mi(θ,γ)mi(θ,γ)′c] = c′Ξc <∞. Hence, for any δ > 0,

0 ≤ lim
N→∞

(
N∑
i=1

E[c′mi(θ,γ)mi(θ,γ)′c]

)−(2+δ) N∑
i=1

E[|c′mi(θ,γ)|2+δ]

≤ (c′Ξc)−(2+δ) lim
N→∞

N−
δ
2 sup
i,N

N∑
i=1

E[|c′mi(θ,γ)|2+δ] = 0.

such that Lyapunov’s condition (and thus Lindeberg’s condition) is satisfied. With As-

sumption B.3, the Lindeberg-Feller central limit theorem implies N−
1
2
∑N

i=1 c′mi(θ,γ)
d→

N (0, c′Ξc). The claim follows from the Cramér-Wold theorem.

It remains to verify Proposition 1 from the main paper under Assumptions B.1 to B.6:

Proof of Proposition 1. The GMM estimator (θ̃
′
, γ̃ ′)′ satisfies the first-order conditions(

N−1
∑N

i=1 Si

)′
VN

(
N−1

∑N
i=1 mi(θ̃, γ̃)

)
= 0. Let Ĩ be an indicator function for the

2‖ · ‖ denotes the Frobenius norm.
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event that
(
N−1

∑N
i=1 Si

)′
VN

(
N−1

∑N
i=1 Si

)
is nonsingular. With mi(θ̃, γ̃) = mi(θ,γ)−

Si[(θ̃
′
, γ̃ ′)′ − (θ′,γ ′)′] and influence function ϕi = (S′VS)−1S′Vmi(θ,γ) as defined in

equation (7), it follows from the first-order conditions that

√
N

θ̃ − θ
γ̃ − γ

 =
1√
N

N∑
i=1

ϕi + (1− Ĩ)
√
N

θ̃ − θ
γ̃ − γ


+

Ĩ
( 1

N

N∑
i=1

Si

)′
VN

(
1

N

N∑
i=1

Si

)−1(
1

N

N∑
i=1

Si

)′
VN − (S′VS)−1S′V


×

(
1√
N

N∑
i=1

mi(θ,γ)

)
.

By Lemma B.1, S′VS is nonsingular and thus Ĩ
p→ 1. By Lemma B.2 and by Slutsky’s the-

orem, N−
1
2
∑N

i=1ϕi
d→ N

(
0, (S′VS)−1S′VΞVS(S′VS)−1

)
. By Assumptions B.4 and B.5

and by Slutsky’s theorem, Ĩ

((
N−1

∑N
i=1 Si

)′
VN

(
N−1

∑N
i=1 Si

))−1 (
N−1

∑N
i=1 Si

)′
VN

converges in probability to (S′VS)−1S′V. Since N−
1
2
∑N

i=1 mi(θ,γ) is bounded in prob-

ability by Lemma B.2, all right-hand side terms besides N−
1
2
∑N

i=1ϕi converge to zero in

probability. Hence, the GMM estimator is consistent.

B.3 Feasible efficient GMM estimation

Blundell and Bond (1998) and Windmeijer (2000) emphasize that for dynamic panel data

models, in general, efficient GMM estimation is infeasible without having a prior estimate

of Ξ. An exception is the situation with homoskedastic error components, E[u2
it|Zi] = σ2

u

and E[α2
i |Zi] = σ2

α, and prior knowledge of τ = σ2
α/σ

2
u. An optimal weighting matrix then

is

VN = N
[
Z′H(IN ⊗ Φ)H′Z

]−1
, (B.4)

with Φ = τιT ι
′
T + IT such that V = σ2

uΞ−1. When the estimator only involves moment

conditions for the first-differenced model such that H′Z = D′Zd, the optimal weighting

matrix (B.4) boils down to VN = N(Z′dDD′Zd)
−1 independent of τ since DiΦD′i = DiD

′
i,

as discussed by Arellano and Bond (1991).

When τ is unknown or homoskedasticity is too strong an assumption, it is common

practice to proceed in two steps to obtain a feasible efficient GMM estimator. In the

5



first step, choosing any positive-definite matrix VN will yield consistent but generally

inefficient estimates θ̃ and γ̃. It is common practice to use a first-step weighting matrix

of the form

VN = N
[
Z′(IN ⊗ Φ∗)Z

]−1
, (B.5)

with different choices for Φ∗. Among others, Arellano and Bover (1995) and Blundell

and Bond (1998) use Φ∗ = I2T−1, while Blundell et al. (2001) take the first-order serial

correlation in the first-differenced residuals into account by choosing

Φ∗ =

DiD
′
i 0

0 IT

 .

When σ2
α is small, Windmeijer (2000) suggests to use Φ∗ = HiH

′
i. In the latter case, the

first-step weighting matrix (B.5) equals the optimal weighting matrix (B.4) under τ = 0.

A reasonable alternative is the weighting matrix (B.4) with an adequate choice (or prior

estimate) of τ .

The second-step weighting matrix is formed as VN = Ξ̃−1. With first-step residuals

ẽi = yi −Wyxiθ̃ − Fiγ̃, a consistent unrestricted estimate of Ξ can be obtained as Ξ̃ =

N−1
∑N

i=1 Z′iHiẽiẽ
′
iH
′
iZi. Alternatively, Ξ̃ = N−1

∑N
i=1 Z′iHiΦ̃H′iZi with an unrestricted

estimate Φ̃ = N−1
∑N

i=1 ẽiẽ
′
i or a restricted estimate Φ̃ = σ̃2

αιT ι
′
T + σ̃2

uIT . Consistent

variance estimates σ̃2
α and σ̃2

u can be obtained as follows:

σ̃2
e =

1

NT

N∑
i=1

T∑
t=1

ẽ2
it,

σ̃2
α =

1

NT (T − 1)/2

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ẽitẽis,

σ̃2
u = σ̃2

e − σ̃2
α.

B.4 Finite-sample improvements

The importance of choosing an appropriate first-step weighting matrix should not be un-

derestimated in applied work. Although the second-step GMM estimator is asymptotically

unaffected, its finite-sample performance still depends on the choice of VN in the first step.

Windmeijer (2005) shows that asymptotic standard error estimates of the two-step GMM
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estimator can be severely downward biased in finite samples. He derives a finite-sample

variance correction. Alternatives to the two-step GMM estimator that are targeted to

improve the finite-sample performance include the iterated and the continuously updated

GMM estimators, see for example Hansen et al. (1996). Recently, Seo and Shin (2016) sug-

gested to average asymptotically efficient two-step estimators that are based on different

initial weighting matrices to reduce the finite-sample variation.

Moreover, GMM estimators might suffer from severe finite-sample distortions that arise

from having too many instruments relative to the sample size, as stressed by Roodman

(2009) among others. The instrument count can be reduced by forming linear combinations

ZiRi of the columns of Zi. For any deterministic transformation matrix Ri, this also leads

to a valid set of moment conditions, E[R′iZ
′
iHiei] = 0. The GMM estimator (5) is then

based on the transformed instruments ZiRi. In the following, we provide examples of

the transformation matrix Ri that are relevant in practical applications.3 We restrict our

attention to block-diagonal versions of Ri:

Ri =

Rdi 0

0 Rli

 ,

such that H′iZiRi = (D′iZdiRdi,ZliRli). Similarly, we consider a block-diagonal partition

of the transformation matrix for the first-differenced equation:

Rdi =


Rdyi 0 0

0 Rdxi ⊗ IKx 0

0 0 Rdfi ⊗ IKf

 ,

conformable for multiplication with the instruments matrix Zdi given in Appendix B.1.

Often, the instrument count is reduced by ignoring some of the available lags. This

procedure is equivalent to the construction of a transformation matrix Rdi that selects

the appropriate columns of the full matrix Zdi. As an example, the following matrices

restrict the lag depth to κ ≥ 1 for both the lagged dependent variable yi,t−1 and strictly

3Mehrhoff (2009) provides similar transformation matrices for an AR(1) process.
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exogenous regressors xit while also discarding future values of the latter:

Rdyi =



1 0 0 · · · 0

0 Jκ2 0 · · · 0

0 0 Jκ3
...

...
...

. . . 0

0 0 · · · 0 Jκ,T−1


, Rdxi =



J̃κ3 0 0 . . . 0

0 J̃κ4 0 · · · 0

0 0
. . .

...

...
... J̃κT 0

0 0 · · · 0 Jκ,T+1


,

where Jκs = Is if s ≤ κ, and Jκs = (0, Iκ)′ with dimension s×κ if s > κ, and J̃κs = (J′κs,0)′

with dimension (T + 1)×min{s, κ}. We could set Rdfi = IT−1 in this case.

Alternatively, the dimension of the instruments matrix can be reduced by collapsing it

into smaller blocks. The following transformation matrices linearly combine the columns

of Zdi, again for the case of strictly exogenous regressors xit:

Rdyi =



J∗0,1,T−2

J∗0,2,T−3

...

J∗0,T−2,1

I∗T−1


, Rdxi =



J∗0,T+1,T−2

J∗1,T+1,T−3

...

J∗T−3,T+1,1

J∗T−2,T+1,0


,

where J∗s1,s2,s3 = (0s2×s1 , I
∗
s2 ,0s2×s3) with dimension s2 × (s1 + s2 + s3), and I∗s2 is the

s2-dimensional mirror identity matrix with ones on the antidiagonal and zeros elsewhere.

ZdyiRdyi now corresponds to the collapsed matrix described by Roodman (2009). As a

consequence, the T (T −1)/2 moment conditions (A.1) are replaced by the T −1 conditions

E
[∑T

t=s yi,t−s∆uit

]
= 0, s = 2, 3, . . . , T . Similarly, the information contained in the

Kx(T + 1)(T − 1) moment conditions (A.2) is condensed into Kx(2T − 1) conditions. The

instruments block containing fi can be collapsed by setting Rdfi = ιT−1. The implied Kf

moment conditions are E[fi(uiT − ui1)] = 0 instead of the Kf (T − 1) conditions (A.3).

The transformation matrices can be further adjusted to combine the collapsing approach

with the lag depth restriction.

The instruments for the level equation, for clarity ignoring the moment conditions

E[x1i0ei1] = 0, can be collapsed into a set of standard instruments by applying the fol-
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lowing transformation:

Rli =



ιT−1 0 0 0

0 ιT ⊗ IKx1 0 0

0 0 ιT ⊗ IKx2 0

0 0 0 IKf1


,

such that ZliRli = [(0,∆y′i,(−1))
′,X1i,DiX2i,F1i].

Appendix C Two-stage estimation

The additional information in this appendix complements Section 4 of the main paper.

C.1 Second-stage GMM estimation

The second-stage GMM estimator ˆ̂γ in equation (11) is obtained from the following min-

imization problem:

ˆ̂γ = arg min
b2

(
1

N
Z′γ(y −Wyxθ̂ − Fb2)

)′
VγN

(
1

N
Z′γ(y −Wyxθ̂ − Fb2)

)′
,

where θ̂ is a consistent first-stage estimator. With an appropriate estimate ψ̂θi of the

first-stage influence function, an estimate of the second-stage influence function is readily

obtained by replacing the probability limits in equation (7) with their sample analogues:

ˆ̂
ψγi = N

(
F′ZγVγNZ′γF

)−1
F′ZγVγN

(
Z′γi

ˆ̂ei −N−1Z′γWyxψ̂θi

)
, (C.1)

where ˆ̂ei = yi −Wyxiθ̂ −Fi
ˆ̂γ. An unrestricted estimate of the variance matrix Σγ of the

asymptotic second-stage distribution can thus be obtained as
ˆ̂
Σγ = N−1

∑N
i=1

ˆ̂
ψγi

ˆ̂
ψ′γi. Al-

ternatively, an estimate could be obtained based on separate estimates of the components

of Ξv in Proposition 2,
ˆ̂
Ξv =

ˆ̂
Ξe +

ˆ̂
SθΣ̂θ

ˆ̂
S′θ −

ˆ̂
Ξ′θe

ˆ̂
S′θ −

ˆ̂
Sθ

ˆ̂
Ξθe, with

ˆ̂
Sθ = N−1Z′γWyx and

ˆ̂
Ξθe = N−1

∑N
i=1 ψ̂θi

ˆ̂e′iZγi, and where Σ̂γ is an estimate of the first-stage variance matrix.

Finally,
ˆ̂
Ξe can be obtained in an unrestricted or restricted way following along similar

lines as in Appendix B.3.
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C.2 Asymptotic distribution of the second-stage GMM estimator

In the following, we present a sufficient set of assumptions for the identification of the

second-stage coefficients and regularity conditions for consistency and asymptotic normal-

ity of the second-stage GMM estimator. For notational convenience, denote the second-

stage moment vector by mγi(b1,b2) = Z′γi(yi −Wyxib1 − Fib2) such that mγi(θ,γ) =

Z′γiei. The corresponding negative gradients with respect to b1 and b2 are Sθi = Z′γiWyxi

and Sγi = Z′γiFi, respectively. The GMM criterion function is minimized under the con-

straint b1 = θ̂ for a consistent first-stage estimator θ̂ that satisfies Assumption 4.

Assumption C.1: The first-stage parameter space is a convex set Θθ with θ ∈ Θθ, and

the second-stage parameter space is the convex set Θγ = RKf with γ ∈ Θγ .

Assumption C.2: A weak law of large numbers holds element-wise for the second-stage

moment vector such that plimN→∞N
−1
∑N

i=1 mγi(b1,b2) = mγ(b1,b2) for all b1 ∈ Θθ

and b2 ∈ Θγ .

Assumption C.3: The second-stage moment conditions E[mγi(θ,γ)] = 0 are satisfied.

Assumption C.4: A weak law of large numbers holds element-wise for the negative gra-

dients of the second-stage moment vector such that plimN→∞N
−1
∑N

i=1 Sθi = Sθ and

plimN→∞N
−1
∑N

i=1 Sγi = Sγ .

Assumption C.5: A weak law of large numbers holds element-wise for the second-stage

weighting matrix VN such that plimN→∞VγN = Vγ is positive semi-definite and VγSγ

has full column rank.

Lemma C.1: Under Assumption 4 and Assumptions C.1 to C.5, all second-stage param-

eters are identified.

Proof. By Assumptions C.2 and C.5 and by Slutsky’s theorem, the second-stage GMM

criterion function converges in probability to mγ(b1,b2)Vγmγ(b1,b2) ≥ 0 for all b1 ∈ Θθ

and b2 ∈ Θγ . By Assumption 4, θ̂
p→ θ. Hence, by continuity of the moment vector and

Assumption C.1, the constrained second-stage GMM criterion function convergences in

probability to mγ(θ,b2)Vγmγ(θ,b2) ≥ 0 for all b2 ∈ Θγ . Denote the corresponding

constrained minimizer by ˆ̂γ∞. By Assumptions C.2 to C.4, the first-order condition is
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S′γVγmγ(θ, ˆ̂γ∞) = 0 with mγ(θ, ˆ̂γ∞) = Sγ(γ − ˆ̂γ∞). By Assumption C.5, S′γVγSγ

is nonsingular. Hence, with Assumption C.1, ˆ̂γ∞ = γ is the unique minimizer of the

constrained asymptotic second-stage GMM criterion function on Θγ .

Assumption C.6: The second-stage moment vector evaluated at the population values,

mγi(θ,γ), is independently distributed across i with supi,N E[‖mγi(θ,γ)‖2+δ] < ∞ for

some δ > 0, and where limN→∞N
−1
∑N

i=1E[mγi(θ,γ)mγi(θ,γ)′] = Ξe is a positive-

definite matrix.

Lemma C.2: Under Assumptions C.3 and C.6, N−
1
2
∑N

i=1 mγi(θ,γ)
d→ N (0,Ξe).

Proof. Let c ∈ RKzγ with c′c = 1. By Assumption C.6 and the Cauchy-Schwarz inequal-

ity, supi,N E[|c′mγi(θ,γ)|2+δ] ≤ supi,N E[‖mγi(θ,γ)‖2+δ] < ∞. With Ξe being positive

definite, 0 < limN→∞N
−1
∑N

i=1E[c′mγi(θ,γ)mγi(θ,γ)′c] = c′Ξec < ∞. Hence, for any

δ > 0,

0 ≤ lim
N→∞

(
N∑
i=1

E[c′mγi(θ,γ)mγi(θ,γ)′c]

)−(2+δ) N∑
i=1

E[|c′mγi(θ,γ)|2+δ]

≤ (c′Ξec)−(2+δ) lim
N→∞

N−
δ
2 sup
i,N

N∑
i=1

E[|c′mγi(θ,γ)|2+δ] = 0.

such that Lyapunov’s condition (and thus Lindeberg’s condition) is satisfied. With As-

sumption C.3, the Lindeberg-Feller central limit theorem implies N−
1
2
∑N

i=1 c′mγi(θ,γ)
d→

N (0, c′Ξec). The claim follows from the Cramér-Wold theorem.

Assumption C.7: The first-stage influence function ψθi is independently distributed

across i with limN→∞N
−1
∑N

i=1E[ψθimγi(θ,γ)′] = Ξθe.

Under Assumption 4 and Assumptions C.1 to C.7, we can now verify Proposition 2

from the main paper.

Proof of Proposition 2. The constrained second-stage GMM estimator ˆ̂γ satisfies the first-

order conditions
(
N−1

∑N
i=1 Sγi

)′
VγN

(
N−1

∑N
i=1 mγi(θ̂, ˆ̂γ)

)
= 0. Let Î be an in-

dicator function for the event that
(
N−1

∑N
i=1 Sγi

)′
VγN

(
N−1

∑N
i=1 Sγi

)
is nonsingu-

lar. With mγi(θ̂, ˆ̂γ) = mγi(θ,γ) − Sθi(θ̂ − θ) − Sγi(ˆ̂γ − γ), first-stage influence func-

tion ψθi implicitly defined in Assumption 4, and second-stage influence function ψγi =
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(S′γVγSγ)−1S′γVγ(mγi(θ,γ)−Sθψθi) as defined in equation (13), it follows from the first-

order conditions that

√
N
(

ˆ̂γ − γ
)

=
1√
N

N∑
i=1

ψγi + (1− Î)
√
N
(

ˆ̂γ − γ
)

+

[
Î

( 1

N

N∑
i=1

Sγi

)′
VγN

(
1

N

N∑
i=1

Sγi

)−1(
1

N

N∑
i=1

Sγi

)′
VγN

− (S′γVγSγ)−1S′γVγ

](
1√
N

N∑
i=1

mγi(θ,γ)

)

−

[
Î

( 1

N

N∑
i=1

Sγi

)′
VγN

(
1

N

N∑
i=1

Sγi

)−1(
1

N

N∑
i=1

Sγi

)′
VγN

(
1

N

N∑
i=1

Sθi

)

− (S′γVγSγ)−1S′γVγSθ

]
√
N
(
θ̂ − θ

)
− (S′γVγSγ)−1S′γVγSθop(1),

where the last op(1) term is the remainder term in Assumption 4. By Lemma C.1, S′γVγSγ

is nonsingular and thus Î
p→ 1. By Assumption 4, Lemma C.2, and Slutsky’s theorem,

N−
1
2
∑N

i=1(mγi(θ,γ) − Sθψθi)
d→ N (0,Ξv), where Ξv = Ξe + SθΣθS

′
θ − Ξ′θeS

′
θ − SθΞθe.

Hence, N−
1
2
∑N

i=1ψγi
d→ N

(
0, (S′γVγSγ)−1S′γVγΞvVγSγ(S′γVγSγ)−1

)
. By Assumptions

C.4 and C.5 and by Slutsky’s theorem, the expressions in square brackets converge in

probability to zero. Since N−
1
2
∑N

i=1 mγi(θ,γ) and
√
N(θ̂ − θ) are bounded in proba-

bility by Lemma C.2 and Assumption 4, respectively, all right-hand side terms besides

N−
1
2
∑N

i=1ψγi converge to zero in probability. Hence, the second-stage GMM estimator

is consistent.

C.3 First-stage GMM estimator

The above results hold for any first-stage estimator that satisfies Assumption 4. Consider

a first-stage GMM estimator θ̂ based on the moment conditions E[Z′θiHiεi] = 0 for the

first-stage model (8), possibly making use of moment conditions for transformed and

untransformed model representations. Moment conditions for the level model need to be

adjusted accordingly compared to a one-stage procedure to account for the fact that the

unobserved unit-specific component αi is replaced by ηi, as defined in Section 4 of the

main paper. It is then straightforward to obtain asymptotic results for the first-stage

GMM estimator similar to those in Proposition 1 such that θ̂ satisfies Assumption 4.
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We can adapt the partitioned regression result in equation (B.1) to the first-stage

estimator, partialing out the intercept term η̄:4

θ̂ =
(
W∗

yx
′QιW

∗
yx

)−1
W∗

yx
′Qιy

∗, (C.2)

where Qι = IKz − ι∗(ι∗′ι∗)−1ι∗′ with ι∗ = L′Z′HιNT . An estimate of the corresponding

first-stage influence function ψθi is then obtained as

ψ̂θi = N
(
W∗

yx
′QιW

∗
yx

)−1
W∗

yx
′QιL

′(Z′θiHiε̂i), (C.3)

where ε̂i = yi −Wyxiθ̂ − ˆ̄ηιT . Following Windmeijer (2005), a finite-sample correction

term might be added for feasible efficient two-step GMM estimators to account for the

first-step estimation error.5

C.4 Comparison of the one-stage and two-stage GMM estimators

The partitioned regression result in equations (B.1) and (B.2) is helpful to contrast the one-

stage estimator (θ̃
′
, γ̃ ′)′ and the two-stage estimator (θ̂

′
, ˆ̂γ ′)′ in the special case considered

below. As a preliminary step, partition the one-stage weighting matrix as

VN =

VdN VdlN

V′dlN VlN

 ,

conformable for multiplications ZdVdNZ′d and ZlVlNZ′l, where Zd and Zl are stacked

instruments matrices for the first-differenced and the level model, respectively.6

For the two-stage approach, let us assume in this appendix that the first-stage GMM

estimator utilizes moment conditions E[Z′diDiei] = 0 for the first-differenced model only.

Thus,

θ̂ =
(
W′

yxH
′ZθVθNZ′θHWyx

)−1
W′

yxH
′ZθVθNZ′θHy, (C.4)

where Zθ = Zd and H = IN ⊗Di. The second-stage estimator ˆ̂γ is given by equation (11).

We can now make the following claim.

4An intercept is not needed if all instruments are orthogonal to time-invariant variables.
5The corresponding expression is easily deduced from equation (2.3) in Windmeijer (2005).
6See Appendix B.

13



Proposition C.1: It holds that θ̃ = θ̂, with θ̃ and θ̂ given by equations (B.1) and (C.4),

respectively, if Z′lF is non-singular and VθN = VdN −VdlNV−1
lNV′dlN .

Proof. Observe that F′H′Z = (F′D′Zd,F
′Zl) = (0,F′Zl) since DF = 0. Consequently,

F∗′F∗ = F′ZlVlNZ′lF. With Z′lF being non-singular, (F∗′F∗)−1 = (Z′lF)−1V−1
lN (F′Zl)

−1.

Let VθN = VdN −VdlNV−1
lNV′dlN . Then,

LQFL′ = VN −VN

0 0

0 V−1
lN

VN =

VθN 0

0 0

 ,

such that after straightforward algebra equation (B.1) boils down to equation (C.4). Alter-

natively, if Z′dD
′Wyx is non-singular as well, θ̃ = θ̂ = (Z′dD

′Wyx)−1Z′dD
′y independent

of the choice of the weighting matrices.

When Z′lF is non-singular, the coefficients γ are exactly identified because the time-

invariant regressors are orthogonal to the instruments for the first-differenced model. But

then the instruments for the level model cannot be used any more to identify the coefficients

θ, and θ̃ consequently equals θ̂ with an appropriate choice of the weighting matrix. A

similar proposition holds for the coefficients γ under the additional restriction that the

level instruments of the one-stage system GMM estimator equal the instruments of the

second-stage GMM estimator, Zl = Zγ .

Proposition C.2: With Zl = Zγ , it holds that γ̃ = ˆ̂γ, with γ̃ and ˆ̂γ given by equations

(B.2) and (11), respectively, if Z′γF is non-singular and VθN = VdN −VdlNV−1
lNV′dlN with

VdlN = 0.

Proof. With F∗′F∗ = F′ZlVlNZ′lF and Zl = Zγ , equation (B.2) can be written as

γ̃ = (F′ZγVlNZ′γF)−1F′ZγVlN (V−1
lNV′dlNZ′dD + Z′γ)(y −Wyxθ̃).

With Z′γF being non-singular, this equation reduces further to

γ̃ = (Z′γF)−1(V−1
lNV′dlNZ′dD + Z′γ)(y −Wyxθ̃).

Equation (11) becomes ˆ̂γ = (Z′γF)−1Z′γ(y −Wyxθ̂) independent of VγN . Consequently,
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γ̃ = ˆ̂γ if VdlN = 0 and θ̃ = θ̂. The latter follows from Proposition C.1 by setting VθN =

VdN −VdlNV−1
lNV′dlN = VdN . Alternatively, if Z′dD

′W is non-singular as well, Z′dD(y−

Wyxθ̂) = 0 and again θ̃ = θ̂ without any restriction on the weighting matrices.

Taken together, Propositions C.1 and C.2 state that one-stage and two-stage GMM

estimation are equivalent for a particular choice of the weighting matrices if both utilize

the same linearly independent instruments for the model in levels and their number equals

the count of time-invariant regressors.

Leaving aside the trivial case of just identified coefficients θ, we can now infer a state-

ment on asymptotic efficiency. When VN is the optimal weighting matrix for the estimator

θ̃ according to Lemma 1, then an optimal weighting matrix for the estimator θ̂ is given by

VθN = VdN −VdlNV−1
lNV′dlN as can be easily seen by calculating the partitioned inverse

of VN . This corresponds to the condition that is required by Proposition C.1. However,

for equivalence of the one-stage and the two-stage estimators, Proposition C.2 requires a

block-diagonal weighting matrix VN of the one-stage estimator such that VdlN = 0. A

relevant case where this would be indeed optimal is a restricted covariance structure of

the error term, E[eie
′
i|Zi] = σ2

αιT ι
′
T + σ2

uIT , together with time invariance of the level in-

struments Zli. In this case, the feasible efficient one-stage and two-stage GMM estimators

will be (asymptotically) identical, and therefore also have the same variance. In general,

it is clear that the restricted estimator with a block-diagonal weighting matrix is less ef-

ficient than the feasible efficient one-stage GMM estimator unless the optimal one-stage

weighting matrix is indeed block diagonal asymptotically.

Remark C.1: If the optimal weighting matrices VN or VθN are based on separate ini-

tial consistent estimates, the equivalence of VθN and VdN − VdlNV−1
lNV′dlN only holds

asymptotically, and the resulting feasible efficient estimators can be numerically different

in finite samples, even if all other conditions of Propositions C.1 and C.2 are satisfied.

If the moment conditions for the model in levels outnumber the time-invariant regres-

sors, the one-stage and the two-stage GMM estimators will generally be different.
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C.5 First-stage QML estimator

As an alternative to a first-stage GMM estimator, we might want to use likelihood-based

estimation techniques. If Kx2 = Kf2 = 0, we can immediately estimate model (1) with

the random-effects QML estimator of Bhargava and Sargan (1983), without the need of

a second stage. When this strong assumption does not hold, Hsiao et al. (2002) propose

to estimate the coefficients of the time-varying regressors based on the first-differenced

model:

∆yit = λ∆yi,t−1 + ∆x′itβ + ∆uit, (C.5)

for the time periods t = 2, 3, . . . , T . However, this procedure not only eliminates the inci-

dental parameters αi but also the time-invariant variables fi. The latter can be recovered

with the two-stage approach described in Section 4 of the main paper.

Hsiao et al. (2002) derive the joint density of ∆yi· = (∆yi1,∆yi2, . . . ,∆yiT )′ conditional

on the strictly exogenous variables ∆Xi· = (∆xi1,∆xi2, . . . ,∆xiT )′. Because ∆yi0 is

unobserved, the marginal density of the initial observations ∆yi1 conditional on ∆Xi·

cannot be obtained immediately from model (C.5). Instead, Hsiao et al. (2002) apply

linear projection techniques to derive the following expression for the initial observations

based on an additional stationarity assumption for the regressors xit:

∆yi1 = b+
T∑
s=1

∆x′isπs + ξi1, (C.6)

with E[ξi1|∆Xi·] = 0, E[ξ2
i1] = σ2

ξ , E[ξi1∆ui2] = −σ2
u, and E[ξi1∆uit] = 0 for t =

3, 4, . . . , T . The 1 + KxT coefficients π = (b,π′1,π
′
2, . . . ,π

′
T )′ are additional nuisance

parameters that need to be estimated jointly with the parameters of interest. Under

16



homoskedasticity, the variance matrix of ∆ui· = (ξi1,∆ui2, . . . ,∆uiT )′ is given by7

E[∆ui·∆u′i·] = σ2
uΩ∗ = σ2

u



ω −1 0 · · · 0

−1 2 −1

0 −1 2

...
. . . −1

0 −1 2


,

where ω = σ2
ξ/σ

2
u. The log-likelihood function can now be set up for the transformed

model ∆yi· = ∆Wyxi·θ + ∆Ẍiπ + ∆ui·, where

∆Wyxi· =

 0 0

∆yi,(−1) ∆Xi

 , ∆Ẍi =

1 ∆x′i1 ∆x′i2 . . . ∆x′iT

0 0 0 . . . 0

 ,

and treating the errors as normally distributed.

Decompose Ω∗−1 = A′B−1A, where A is a T × T lower-triangular and B a diagonal

matrix.8 Moreover, let P = IN ⊗ (B−1/2A). The QML estimator of θ has a closed-form

solution given by:

θ̂ = (∆W′
yx·P̂

′Q̂xP̂∆Wyx·)
−1∆W′

yx·P̂
′Q̂xP̂∆yi·, (C.7)

where Q̂x = INT − P̂∆Ẍ(∆Ẍ′P̂′P̂∆Ẍ)−1∆Ẍ′P̂′, and P̂ is a function of the variance

estimate ω̂. The variance matrix of θ̂ is the corresponding partition of the inverse negative

Hessian matrix.

In our Monte Carlo simulations in Section 6 and the empirical application in Section 7

of the main paper, we obtain the estimate ω̂ by maximizing the concentrated log-likelihood

function in terms of ω only, given the analytical first-order conditions for the remaining

parameters. The initial values for the QML optimization are obtained in the following

steps. First, we obtain consistent GMM estimates of λ and β, and a variance estimate of σ2
u

from the corresponding first-differenced residuals. The nuisance parameters π are obtained

as ordinary least squares estimates from the initial observations equation (C.6). Second,

7Hayakawa and Pesaran (2015) extend this likelihood approach to accommodate for heteroskedastic
errors.

8See Hsiao et al. (2002) for details.
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given those estimates we evaluate the first-order condition for the variance parameter

ω. Third, we update the estimates of the other parameters based on their respective

optimality conditions given this estimate of ω. Finally, we repeat the second and third

step one more time to obtain a faster convergence of the subsequent Newton-Raphson

algorithm.9

The second-stage estimator ˆ̂γ for the coefficients of the time-invariant regressors is

given by equation (11), and the joint asymptotic distribution of the first-stage and second-

stage estimators follows from Assumption 4, Proposition 2, and Corollary 1. Finally, the

influence function of the whole parameter vector including the ancillary parameters is

given by the inverse negative expected Hessian matrix multiplied by the score function for

unit i.10 The influence function for the parameter vector θ̂ is the corresponding partition.

Appendix D Testing the overidentifying restrictions

In this supplement to Section 5 of the main paper, we briefly discuss a generalization

of the familiar Hausman (1978) test that is asymptotically equivalent to the difference-

in-Hansen or second-stage Hansen (1982) test.11 The idea of this test is to contrast the

coefficient estimates for the time-varying regressors from the one-stage and the two-stage

procedures:12

Ĥγ =
(
θ̂ − θ̃

)′ (
Ξ̂H

)+ (
θ̂ − θ̃

)
d→ χ2

min(Kzγ−Kf ,1+Kx), (D.1)

where Ξ̂H is a consistent estimate of the asymptotic variance matrix of θ̂ − θ̃, and (·)+

denotes a generalized inverse. Under the null hypothesis of no misspecification, both

estimators are consistent, while the one-stage GMM estimator θ̃ with an optimal weighting

matrix is efficient. When Assumption 3 is violated, θ̃ in general turns inconsistent in

contrast to θ̂. The two estimators differ only in the additional Kzγ −Kf overidentifying

restrictions. In most practical situations, this number is smaller than the number of

9See Kripfganz (2016) for details about the implementation and the necessary adjustments in the case
of unbalanced panel data.

10See Newey and McFadden (1994), Section 3.
11In simulation results not shown, we find that the generalized Hausman test proves largely impractical

in finite samples because it is substantially oversized. Its rejection rate is close to 30% in our baseline
specification that we describe in Section 6 of the main paper.

12The coefficients of time dummies and similar variables that are asymptotically unaffected by the tested
moment restrictions should be excluded from the comparison.
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contrasted coefficients, 1 +Kx, such that the asymptotic variance matrix ΞH cannot have

full rank. The degrees of freedom of the generalized Hausman test then equal those of the

corresponding difference-in-Hansen or second-stage Hansen test.13

With the influence function ψθi of the first-stage estimator and the respective partition

ϕθi of the one-stage influence function, we can express the asymptotic covariance matrix of

the test statistic as ΞH = limN→∞N
−1
∑N

i=1E[(ψθi−ϕθi)(ψθi−ϕθi)′]. From Proposition

1, the asymptotic variance matrix of θ̃ is Ωθ = limN→∞N
−1
∑N

i=1E[ϕθiϕ
′
θi], and from

Assumption 4, the asymptotic variance matrix of θ̂ is Σθ = limN→∞
∑N

i=1E[ψθiψ
′
θi].

Following the original insights by Hausman (1978), ΞH = Σθ − Ωθ, given that θ̃ is an

efficient estimator under the null hypothesis. However, the estimate Ξ̂H = Σ̂θ − Ω̃θ is not

guaranteed to be positive semidefinite in finite samples which might result in a negative,

and therefore unusable, estimate Ĥγ . A robust estimate that does not rely on the efficiency

of the one-stage estimator can be constructed similar to White (1982) by using consistent

estimates of the variance matrices and influence functions:

Ξ̂H = Σ̂θ + Ω̃θ −
1

N

N∑
i=1

ψ̂θiϕ̃
′
θi −

1

N

N∑
i=1

ϕ̃θiψ̂
′
θi. (D.2)

Appendix E Monte Carlo simulation

This appendix contains additional information about the data-generating process and

further results from our Monte Carlo simulation in Section 6 of the main paper.

E.1 Data-generating process

The data-generating process is presented in Section 6.1 and the estimators are described

in Table 1 of the main paper. In the following, we provide some additional clarification

about the derivation of the parameter restrictions. To control the correlation of the time-

varying regressors with the time-invariant variables, we want to express the coefficients in

13The Hausman test is essentially a test of linear combinations of moment restrictions. See Ruud (2000,
Chapter 22) and Baum et al. (2003) for a general discussion of GMM specification tests.
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equation (19) as a function of the correlation coefficients in matrix

Ψ =



1 ρf1,f2 ρf1,z ρf1,α

ρf1,f2 1 ρf2,z ρf2,α

ρf1,z ρf2,z 1 ρz,α

ρf1,α ρf2,α ρz,α 1


=



1 0 0 0

0 1 ρf2,z ρf2,α

0 ρf2,z 1 0

0 ρf2,α 0 1


,

as well as ρx1,f2 and ρx2,α.

Given that x1it and x2it are covariance stationary, their data-generating process can

be written as

xkit =
πk1

1− φk
f1i +

πk2

1− φk
f2i +

κk
1− φk

αi +
∞∑
s=0

φskεki,t−s, k = 1, 2. (E.1)

By imposing that f1i is uncorrelated with f2i and αi, respectively, we can derive

Cov(xkit, f1i) =
πk1σ

2
f1

1− φk
, (E.2)

Cov(xkit, f2i) =
πk2σ

2
f2 + κkρf2,ασf2σα

1− φk
, (E.3)

Cov(xkit, αi) =
πk2ρf2,ασf2σα + κkσ

2
α

1− φk
, (E.4)

k = 1, 2. Hence, f1i is uncorrelated with both x1it and x2it if π11 = π21 = 0. To ensure

the exogeneity of x1it with respect to αi, equation (E.4) requires κ1 = −π12ρf2,ασf2/σα.

Then, using the fact that ε1it is distributed independently and identically over time with

V ar(ε1it) = (1− φ2)σ2
ε1,

V ar(x1it) =
π2

12σ
2
f2 + κ2

1σ
2
α + 2π12κ1ρf2,ασf2σα

(1− φ1)2
+ σ2

ε1 =
π2

12(1− ρ2
f2,α)σ2

f2

(1− φ1)2
+ σ2

ε1, (E.5)

which is no longer a function of σ2
α. From the definition of ρx1,f2, we can then solve for

the parameter π12:

π12 =
(1− φ1)ρx1,f2σε1√

(1− ρ2
f2,α)(1− ρ2

f2,α − ρ2
x1,f2)σf2

.

Similarly, to achieve a zero correlation between x2it and f2i, equation (E.3) tells us to set
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π22 = −κ2ρf2,ασα/σf2. With

V ar(x2it) =
π2

22σ
2
f2 + κ2

2σ
2
α + 2π22κ2ρf2,ασf2σα

(1− φ2)2
+ σ2

ε2 =
κ2

2(1− ρ2
f2,α)σ2

α

(1− φ2)2
+ σ2

ε2, (E.6)

we can solve for the remaining parameter κ2 from the definition of ρx2,α:

κ2 =
(1− φ2)ρx2,ασε2√

(1− ρ2
f2,α)(1− ρ2

f2,α − ρ2
x2,α)σα

.

In the following, we provide details on the derivation of the population value of the

coefficient of determination for the first-differenced regression model:

R2
∆y = 1− V ar(∆yit|∆x1it,∆x1i,t−1, . . . ,∆x2it,∆x2i,t−1, . . .)

V ar(∆yit)
.

Given stationarity, the first-differenced data-generating processes are

∆yit = λ∆yi,t−1 + β1∆x1it + β2∆x2it + ∆uit

= β1

∞∑
s=0

λs∆x1i,t−s + β2

∞∑
s=0

λs∆x2i,t−s +
∞∑
s=0

λs∆ui,t−s, (E.7)

and

∆xkit = φk∆xki,t−1 + ∆εkit =

∞∑
s=0

φsk∆εki,t−s, k = 1, 2. (E.8)

Since uit is independent and identically distributed over time with V ar(uit) = (1 −

λ2)σ2
u, such that V ar(∆uit) = 2(1 − λ2)σ2

u, Cov(∆uit,∆ui,t−1) = −(1 − λ2)σ2
u, and

Cov(∆uit,∆ui,t−s) = 0 for all s > 1, it directly follows from equation (E.7) that

V ar(∆yit|∆x1it,∆x1i,t−1, . . . ,∆x2it,∆x2i,t−1, . . .) = 2(1− λ)σ2
u. (E.9)

Because x1it and x2it are uncorrelated with each other and with uit, the unconditional

variance of ∆yit can be decomposed as

V ar(∆yit) = β2
1V ar

( ∞∑
s=0

λs∆x1i,t−s

)
+ β2

2V ar

( ∞∑
s=0

λs∆x2i,t−s

)

+ V ar(∆yit|∆x1it,∆x1i,t−1, . . . ,∆x2it,∆x2i,t−1, . . .),
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with

V ar

( ∞∑
s=0

λs∆xki,t−s

)
=

( ∞∑
s=0

λ2sV ar(∆xkit) + 2

∞∑
s=0

∞∑
l=s+1

λs+lCov(∆xki,t−s,∆xki,t−l)

)
,

k = 1, 2. We thus need the variance

V ar(∆xkit) = 2(1− φk)σ2
εk, k = 1, 2, (E.10)

obtained analogously to equation (E.9), and the autocovariances

Cov(∆xki,t−s,∆xki,t−l) = −φl−s−1
k (1− φk)2σ2

εk, k = 1, 2, (E.11)

such that

V ar(∆yit) = 2(1− λ)

(
β2

1(1− φ1)

(1− λ2)(1− λφ1)
σ2
ε1 +

β2
2(1− φ2)

(1− λ2)(1− λφ2)
σ2
ε2 + σ2

u

)
. (E.12)

With the conditional variance (E.9) and the unconditional variance (E.12) of ∆yit, the

population value of the coefficient of determination results as

R2
∆y =

β2
1(1− φ1)(1− λφ2)σ2

ε1 + β2
2(1− φ2)(1− λφ1)σ2

ε2

β2
1(1− φ1)(1− λφ2)σ2

ε1 + β2
2(1− φ2)(1− λφ1)σ2

ε2 + (1− λ2)(1− λφ1)(1− λφ2)σ2
u

=
(1− φ1)σ2

ε1 + (1− φ2)σ2
ε2

(1− φ1)σ2
ε1 + (1− φ2)σ2

ε2 + (1− λ2)σ2
u

, (E.13)

where the last equality follows by setting βk =
√

1− λφk for each k = 1, 2.

Finally, the equations used to initialize the data-generating processes are:

yi,−50 =
β1

1− λ
x1i,−50 +

β2

1− λ
x2i,−50 +

γ1

1− λ
f1i +

γ2

1− λ
f2i +

κy
1− λ

αi + νi, (E.14)

xki,−50 =
πk1

1− φk
f1i +

πk2

1− φk
f2i +

κk
1− φk

αi + ξki, k = 1, 2, (E.15)

where (νi, ξ1i, ξ2i)
i.i.d.∼ N

(
0, diag(σ2

u, σ
2
ε1, σ

2
ε2)
)
.

E.2 Simulation results for misspecified estimators

All of the estimators considered in Section 6 of the main paper are consistent given the

data-generating process in our baseline scenario. Here, we highlight the adverse conse-
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quences of incorrect assumptions. In Table 6, we leave the data-generating process un-

changed but classify the endogenous time-varying regressor x2it as uncorrelated with the

unobserved unit-specific effects αi. Instead, x1it is treated as correlated with αi. Clearly,

the first-stage coefficients λ, β1, and β2 of the two-stage estimators are completely unaf-

fected because the modified regressor classification comes into effect only in the second

stage. The one-stage estimators instead suffer from an endogeneity bias due to x2it being

used as an invalid instrument. While the bias and RMSE for the short-run coefficients

still appear to be relatively small, they become substantial when we look at the long-run

coefficients.

It might seem odd that even the estimates for the second-stage coefficients γ1 and γ2

of the two-stage estimators are hardly affected. This is due to the fact that x2it is uncor-

related with both time-invariant regressors and the exogenous time-invariant instrument

zi is sufficient to identify the coefficient of the endogenous time-invariant regressor f2i.

Nevertheless, the second-stage Hansen test has a high power to detect the misspecifica-

tion, as shown in Table 3 of the main paper. In particular, it is more powerful than the

difference-in-Hansen test.

In Table 7, we aggravate the misspecification problem by generating zi as positively

correlated with αi. It thus becomes an invalid instrumental variable and the second-stage

estimates for γ2 are now severely biased as well. Interestingly, however, the corresponding

one-stage estimates become much less biased. The effects from the misspecification of x2it

and zi apparently almost offset each other in this example.

In Table 8, we consider further types of estimator misspecifications given our baseline

data-generating process. First, we look at one-stage and two-stage GMM estimators that

replace Assumption 3 by a Mundlak (1978) assumption as in Remarks 3 and 5 (M-sGMM1

and M-sGMM2). The Mundlak (1978) projection has no effect on the first stage of M-

sGMM1 which is identical to the first stage of the sGMM2 estimator in Table 2. For the

one-stage estimator M-sGMM1, the results are slightly worse in comparison to sGMM1

but the incorrect assumption about the correlation between the observed and unobserved

time-invariant variables apparently does not bite much. This picture changes for the

coefficient γ2 of the endogenous time-invariant regressor. Both M-sGMM1 and M-sGMM2

are significantly biased because the Mundlak (1978) assumption is not in line with the
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data-generating process. For the short-run coefficient, the bias of the two-stage estimator

is slightly less pronounced, while the picture is reversed for the long-run coefficient.

The Mundlak (1978) assumption can also be used to construct the one-stage Bhargava

and Sargan (1983) QML estimator (M-QML1). This estimator would be more efficient

than the two-stage Hsiao et al. (2002) QML estimator if this assumption was correct.

Here, their performance hardly differs with the exception of the coefficient γ2 that is only

correctly identified by the two-stage estimator, as evident in Table 8.

To demonstrate the implications of neglected dynamics, we furthermore consider a

static Hausman and Taylor (1981) GMM estimator (HT-GMM1) and its two-stage variant

(FE-IV2) in Table 8. Both use the exogenous variables x1it, f1i, and zi as standard

instruments, HT-GMM1 in the first stage and FE-IV2 in the second stage. The coefficients

of the time-varying regressors x1it and x2it are instrumented with the deviations from their

own within-group means, x1it − x̄1i and x2it − x̄2i, respectively.14 Because of the omitted

lagged dependent variable, these estimators cannot distinguish between short-run and

long-run coefficients. On average, the regression coefficient β1 is estimated to be 0.82

by HT-GMM1 and 0.74 by FE-IV2. For β2, the average estimates are 0.75 and 0.74,

respectively. Given a true short-run coefficient of 0.6 and a true long-run coefficient of 3,

it is apparent that the static-model estimators yield biased short-run effects and cannot

be interpreted as long-run coefficients. For the time-invariant regressors, the opposite

is the case. The average estimates for γ1 are 3.0 with both estimators. They are thus

very precise estimates of the long-run coefficient. For the coefficient γ2 of the endogenous

time-invariant regressor, the respective average estimates are 3.97 and 3.79, which are still

approximations of the long-run coefficient but with substantial upward bias. The results

are in line with the findings of Egger and Pfaffermayr (2004b).

Despite the use of the nonlinear moment conditions that are implied by the absence

of serial correlation in the idiosyncratic error term, the Ahn and Schmidt (1995) estima-

tors nlGMM1 and nlGMM2 remained inferior to the sGMM1 and sGMM2 estimators,

respectively, in our baseline data-generating process. The additional efficiency gains of

the latter rest on Assumption A.1 that is implied by mean stationarity. In Table 9, we

14The FE-IV2 corresponds to the Pesaran and Zhou (2018) estimator with the just-identified fixed-effects
estimator in the first stage.
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consider a violation of this assumption. Instead of drawing the initial observations from

the joint stationary distribution 50 time points before the estimation sample starts, we

now set yi0 = x1i0 = x2i0 = 0 without burn-in period. This creates a correlation of the

initial-period change, and thus of all subsequent periods’ change, with the unobserved

unit-specific effects such that the moment conditions (A.5) and (A.6) become invalid. As

expected, the nonlinear GMM estimators and the two-stage QML estimator are robust

to this modification of the data-generating process, while the system GMM estimators

become substantially biased.

E.3 Simulation results under different variance and covariance set-ups

Binder et al. (2005) and Bun and Windmeijer (2010) emphasize that a high variance ratio

of the unit-specific effects to the idiosyncratic error term can result in a weak-instruments

problem for the GMM estimators. In Tables 10 and 11, we modify our baseline scenario by

reducing the variance ratio first to ω = 1 and then further to ω = 1/3. For the coefficients

of the time-varying regressors, this alteration reduces both the bias and the RMSE of the

GMM estimators, as expected. The nlGMM2 estimator benefits most because it is now

less prone to produce outlying estimates of λ close to unity. The first-stage QML estimator

is unaffected because it performs the estimation on the first-differenced model. For the

coefficients of the time-invariant regressors, the picture is different. They tend to be less

precisely estimated, even though the RMSE of the short-run coefficient γ1 initially shrinks

slightly. Given that the first-stage estimates of the QML2 estimator remain unchanged,

its worsened second-stage performance provides the most genuine evidence that a lower

variance ratio is unfavorable for the time-invariant regressors.

Changing the variance ratio ω does not alter the relative variances among the time-

invariant model components. In Table 12, we double the variance of αi to σ2
α = 2, while

keeping the variance ratio fixed at its initial value ω = 3. There is not much of an

effect on the coefficients of the time-varying regressors. In particular, the first-stage QML

estimator is again unaffected by construction. However, the precision of the coefficients

of the observed regressors f1i and f2i deteriorates because they now explain less of the

time-invariant variation across units.

As another experiment, we increase the signal-to-noise ratio to τ = 2 such that the
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variance parameters σ2
ε1 and σ2

ε2 quadruple, everything else as in the baseline scenario.

The results improve unequivocally for all coefficients and estimators, as can be seen in

Table 13.

In the baseline scenario, the endogenous time-invariant regressor f2i was twice as

strongly correlated with the time-invariant external instrument zi than with the time-

varying internal instrument x1it. In Table 14, we swap these correlations to analyze their

importance for the identification of the coefficient γ2. It turns out that both the bias and

the RMSE increase noticeably for this coefficient when the internal instrument is more

relevant than the external. It thus appears to be preferable to use strong external instru-

ments, if available, compared to an identification strategy that primarily builds on internal

instruments. This observation is confirmed by a scenario in which the correlation between

zi and f2i is lowered such that ρx1,f2 = ρz,f2 = 0.2. The results in Table 15 demonstrate

that the RMSE of γ2 substantially increases in this situation compared to the baseline

scenario.

E.4 Simulation results under different degrees of persistence

The persistence of the time-varying variables plays an important role in determining the es-

timator properties in dynamic panel data models. In the baseline scenario, both the depen-

dent variable yit and the independent variables x1it and x2it are already quite persistent.

In Table 16, we get even closer to the nonstationary case by increasing the autoregressive

parameters to λ = φ1 = φ2 = 0.9. Perhaps surprisingly at first glance, the estimators

for the short-run coefficients of the time-varying regressors tend to have a lower RMSE.

This result might appear counterintuitive in the light of the potential weak-instruments

problem that can arise as λ → 1.15 It can be explained by the observation that unity

effectively serves as an upper barrier for the distribution of λ̂ which reduces the variance

of the estimators. In particular for the system GMM estimators, the resulting distribution

is left-skewed. The nlGMM2 estimator is the only estimator with estimates exceeding this

threshold, resulting in severe distortions when estimating the long-run coefficients. Also

for the other estimators, it becomes more challenging to obtain precise estimates of the

long-run coefficients. The coefficients of the time-invariant regressors are less precisely

15See for example Blundell and Bond (1998) and Bun and Sarafidis (2015).
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estimated, not least because they now explain a smaller share of the total variance of the

dependent variable.

Tables 17 to 24 similarly show the simulation results for less persistent data-generating

processes. In comparison to the baseline scenario, already for λ = φ1 = φ2 = 0.7 the

problem of too many estimates of λ close to unity disappears which is reflected in a

reasonably small RMSE for the long-run coefficients with all estimators. For the short-

run coefficients of the time-varying regressors, the RMSE initially increases, until around

a true value of λ = 0.5. For the sGMM1 and the QML estimators, the turnaround point

occurs at a slightly lower persistence. The argument made above for the high-persistence

case is just reversed. The upper barrier for λ̂ is now farther away such that the distribution

has more room to spread out. For very low persistence levels, the RMSE starts to improve

again for the autoregressive coefficient λ but not for the coefficients β1 and β2. On the

other side, less persistence in the time-varying regressors is always preferable to obtain

more precise estimates of the coefficients γ1 and γ2 of the time-invariant regressors, both

regarding the short-run and long-run estimates.

An interesting observation can be made in the case with no history dependence at all.

The true values of the long-run coefficients equal those of the short-run coefficients and

the estimation of a static model would be appropriate. However, despite the estimation

uncertainty that is additionally introduced by unnecessarily estimating the coefficient λ

in a dynamic model, the long-run estimates γ̂1/(1 − λ̂) are actually more precise than

the short-run estimates γ̂1 for the coefficient γ1, and similarly for γ2, as indicated by the

RMSE in Table 24.

E.5 Simulation results with different sample sizes

A reduction of the sample size has the expected effect that all of the statistics worsen. In

Table 25, we reduced the cross-sectional sample size to N = 100 units. The most dramatic

deterioration of the estimators’ performance is observed for the long-run coefficients that

are estimated with substantial imprecision. In particular the two-stage estimators suffer

from a larger number of estimates λ̂ that are close to or beyond unity. A large sample size

is definitely critical if the interest is on precise long-run coefficients.

Table 26 highlights for N = 650 that all estimators show the expected convergence

27



behavior when the cross-sectional sample size grows. However, it is worth emphasizing that

the underestimation of the second-stage standard errors without the correction formula in

Proposition 2, and therefore also the size distortion of the Wald tests, remains at about

the same magnitude. The first-stage estimation error affects the asymptotic distribution

and is relevant for any sample size.

Tables 27 and 28 display the simulation results for alternative time horizons, T = 3

and T = 10, respectively. Given that we have taken effective measures to limit the

proliferation of instruments, increasing the number of time periods helps to improve the

accuracy of the GMM estimators. For the QML estimator of Hsiao et al. (2002), it needs

to be highlighted that it has a bimodal distribution when T = 3.16 As a consequence, its

RMSE is substantially larger. The corresponding second-stage estimator clearly suffers

as well from the poor first-stage performance. When T increases, this unfavorable effect

disappears and the two-stage QML estimator can unfold its full potential. Unlike an

increase in the cross-sectional dimension N , adding more time periods appears to reduce

the distortions from the ignored standard error correction.

Appendix F Empirical application

F.1 Background and data description

In this appendix, we provide additional details about the data used by Egger and Pfaffer-

mayr (2004a) and in Section 7 of our main paper, augmented with the dummy variables

from the GeoDist data base (Mayer and Zignago, 2011).17 The data on U.S. outward FDI

form an unbalanced panel data set with annual observations for 341 bilateral industry level

relationships and a time span from 1989 to 1999. It suffers from truncation because data

points with FDI reported as zero are excluded from the sample.18 In addition, some data

points are missing because they could be associated with individual companies, and some

are genuinely unavailable. Table 29 provides summary statistics for the final estimation

sample that includes 2,767 observations. Given the set of 69 countries, 7 manufacturing

industries, and 11 time periods, this implies a coverage of only 52 percent. With the data

16Juodis (2018) provides a detailed discussion of this peculiarity.
17Summary statistics are unavailable in the original paper by Egger and Pfaffermayr (2004a). We have

computed the statistics in this appendix based on the data set in the Journal of Applied Econometrics
Data Archive.

18Egger and Pfaffermayr (2004a) log transform their data and thus exclude zeros for obvious reasons.
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at hand, it is not possible to carry out a systematic analysis about the magnitude or di-

rection of a potential sample selection bias. If truncation from below was the major cause,

we would overestimate the conditional mean of the dependent variable but the effect on

the coefficients would remain unclear.

The data set of Egger and Pfaffermayr (2004a) has another peculiarity. All indepen-

dent variables are constant across industry within any partner country. Table 29 counts

these observations multiple times, depending on the number of nonmissing industries for a

given country-year pair. In contrast, Table 30 provides the corresponding summary statis-

tics for distinct observations only. In a strongly balanced panel, the variable means in

both tables would coincide. Large differences indicate that sample selection is correlated

with the respective variable. Here, we might be concerned that missing values are more

likely to occur the stronger the similarity is between the U.S. and the partner country in

terms of GDP, and the smaller the relative advantage of the U.S. is in terms of the factor

endowments. Given that these variables have relatively little variation over time, we might

be confident that the country-industry specific effects can account for most of this corre-

lation. Although not uniformly, we also observe that the number of missing observations

tends to decline over time. Any potential concern in this regard might be alleviated by

the inclusion of time effects in all regressions. Finally, we do not find evidence that sample

selection is related to the key time-invariant variable, geographical distance.

Based on a New Trade Theory gravity model, Egger and Pfaffermayr (2004a) expect a

positive impact of bilateral GDP on real outward FDI. The similarity of the country size

(in terms of GDP) is presumed to have an effect on (horizontal) FDI, too, but its sign is

a priori unclear. An important role in their model play the relative factor endowments

in physical capital, human capital, and labor. The first two of them are expected to be

supportive of FDI while the last one should have the opposite sign. For the variable of

main interest, geographical distance, the model predicts a positive effect in a scenario of

predominantly vertical FDI and an ambiguous effect when horizontal MNEs dominate.

F.2 Additional empirical results

In our Monte Carlo simulation, we considered an alternative GMM estimator with the

nonlinear moment conditions (A.4) proposed by Ahn and Schmidt (1995). We present
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the respective empirical results for the dynamic model with geographical distance as the

only time-invariant regressor in the first two columns of Table 31. The estimates reveal

again a substantial degree of history dependence, while all other explanatory variables

turn statistically insignificant. The Hausman-Taylor instruments are the same as in the

last three columns of Table 4 in the main paper. The resulting overidentifying restriction

is not rejected by the difference-in-Hansen and the second-stage Hansen test.

For completeness, column 3 of Table 31 displays the estimates from the two-stage

analogue of the system GMM estimator with the Mundlak (1978) projection and the

additional time-invariant control variables in the last column of Table 5.19 The qualitative

conclusions do not differ. With the Mundlak CRE approach, a one-stage QML alternative

is available. This is the Bhargava and Sargan (1983) QML estimator that is based on the

model in levels. Similarly to the QML estimator of Hsiao et al. (2002), it accounts for the

endogeneity of the lagged dependent variable by modeling the marginal distribution of the

initial observations. The results are shown in column 4 of Table 31. Despite the loss of

observations due to time series gaps, the results are remarkably similar to the M-sGMM

estimates.

Finally, we make once again use of the robustness property of the two-stage approach

by applying the Mundlak (1978) assumption only in the second stage. The Bhargava and

Sargan (1983) QML estimator is not applicable in the first stage if some of the time-

varying regressors (besides the lagged dependent variable) are allowed to be correlated

with the unobserved effect. We thus have to resort again to the Hsiao et al. (2002) first-

difference QML estimator. The first-stage results in column 5 of Table 31 are identical

to those in column 5 of Table 5. In the second stage, only the common border and the

colonial relationship dummies are found to statistically significantly affect the formation

of outward FDI, both with the expected positive sign.

In another model specification, we have added the absolute value of the relative physical

capital endowment as a regressor because it is standard practice to include the main

effects of interaction terms. However, this main effect turned out to be clearly statistically

insignificant. For brevity, we do not report these results.

19Besides the 5 time-invariant explanatory variables and the regression constant, the second-stage re-
gression includes the 7 within-group averages of the strictly exogenous time-varying regressors and 9
within-group averages of the time dummies, adding up to a total of 22 coefficients.
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Tables

Table 6: Simulation results: coefficient estimates, invalid instruments (i)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0523 0.0541 0.9479 0.9768
sGMM2 0.0062 0.0273 0.0802 0.9848
nlGMM1 0.0649 0.0671 0.9498 0.9754
nlGMM2 0.0091 0.0341 0.0619 0.9539
QML2 -0.0004 0.0206 0.0482 1.0003

β1 sGMM1 -0.0103 0.0444 0.0526 1.0192 1.0308 1.1456 0.5359 1.0000
sGMM2 0.0016 0.0450 0.0520 1.0001 0.1655 0.5415 0.0464 0.9763
nlGMM1 0.0043 0.0480 0.0495 1.0148 1.5499 1.7070 0.6309 0.9861
nlGMM2 0.0014 0.0458 0.0494 1.0160 0.2515 2.5280 0.0392 0.4411
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0755 0.0836 0.5347 1.0210 1.6015 1.6394 0.9986 0.9556
sGMM2 0.0017 0.0448 0.0521 1.0060 0.1661 0.5385 0.0452 0.9826
nlGMM1 0.0518 0.0671 0.2339 1.0070 1.8741 1.9274 0.9985 0.9558
nlGMM2 0.0017 0.0460 0.0486 1.0137 0.2520 2.4380 0.0374 0.4513
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0517 0.9945

γ1 sGMM1 -0.1591 0.1665 0.8733 0.9815 -0.0138 0.1848 0.0521 0.9982
sGMM2 -0.0187 0.0884 0.0801 0.4611 0.9795 0.3977 0.0001 0.1778 0.0492 1.0045
nlGMM1 -0.1962 0.2044 0.9065 0.9840 -0.0112 0.1908 0.0534 0.9950
nlGMM2 -0.0271 0.1076 0.0612 0.5110 0.9630 0.3265 -0.0001 0.2413 0.0477 0.8731
QML2 0.0017 0.0714 0.0483 0.3333 1.0023 0.4970 0.0018 0.1771 0.0484 1.0033

γ2 sGMM1 -0.1607 0.1820 0.5092 0.9730 -0.0296 0.4825 0.0525 0.9673
sGMM2 -0.0068 0.1343 0.0685 0.2137 0.9412 0.6424 0.0564 0.5137 0.0787 0.8923
nlGMM1 -0.2108 0.2281 0.6831 0.9885 -0.1269 0.5107 0.0492 0.9821
nlGMM2 -0.0153 0.1523 0.0753 0.2822 0.9357 0.5630 0.0524 0.6940 0.0763 0.8028
QML2 0.0187 0.1274 0.0684 0.1683 0.9170 0.7057 0.0821 0.5199 0.0890 0.8765

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α, ρz,α) = (0.2, 0.4, 0.3, 0.3, 0), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is the same as in the baseline scenario. In
the construction of the estimators, the collapsed moment condition (3) for x1it is replaced by an identical collapsed moment
condition for x2it.
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Table 7: Simulation results: coefficient estimates, invalid instruments (ii)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0524 0.0542 0.9443 0.9757
sGMM2 0.0062 0.0273 0.0802 0.9837
nlGMM1 0.0657 0.0679 0.9521 0.9784
nlGMM2 0.0091 0.0341 0.0619 0.9543
QML2 -0.0004 0.0206 0.0482 1.0003

β1 sGMM1 -0.0107 0.0444 0.0541 1.0225 1.0308 1.1466 0.5274 1.0013
sGMM2 0.0016 0.0449 0.0504 1.0011 0.1647 0.5412 0.0445 0.9760
nlGMM1 0.0044 0.0479 0.0484 1.0145 1.5769 1.7329 0.6432 0.9889
nlGMM2 0.0014 0.0458 0.0494 1.0157 0.2558 2.3980 0.0387 0.4414
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0751 0.0833 0.5282 1.0228 1.6022 1.6413 0.9977 0.9572
sGMM2 0.0017 0.0448 0.0515 1.0056 0.1655 0.5392 0.0469 0.9806
nlGMM1 0.0501 0.0657 0.2191 1.0094 1.8906 1.9445 0.9984 0.9623
nlGMM2 0.0017 0.0460 0.0494 1.0132 0.2560 2.2899 0.0372 0.4554
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0518 0.9945

γ1 sGMM1 -0.1577 0.1654 0.8597 0.9812 -0.0028 0.1880 0.0488 1.0017
sGMM2 -0.0188 0.0888 0.0806 0.4485 0.9798 0.4039 -0.0012 0.1813 0.0508 1.0057
nlGMM1 -0.1972 0.2054 0.9053 0.9847 -0.0010 0.1944 0.0492 0.9993
nlGMM2 -0.0273 0.1081 0.0625 0.5030 0.9629 0.3320 -0.0012 0.2369 0.0482 0.8849
QML2 0.0014 0.0719 0.0489 0.3270 0.9999 0.5040 0.0005 0.1807 0.0520 1.0045

γ2 sGMM1 0.0972 0.1444 0.1263 0.9535 1.7164 1.7872 0.9555 0.9596
sGMM2 0.3543 0.3956 0.5486 0.8989 0.9549 0.4988 1.9141 1.9843 0.9811 0.8928
nlGMM1 0.0245 0.1188 0.0498 0.9717 1.6348 1.7133 0.9044 0.9808
nlGMM2 0.3397 0.3983 0.4417 0.8534 0.9401 0.4184 1.9051 2.0493 0.9617 0.7655
QML2 0.3930 0.4227 0.7884 0.9531 0.9375 0.5833 1.9473 2.0171 0.9847 0.8753

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α, ρz,α) = (0.2, 0.4, 0.3, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by increasing ρz,α from 0 to 0.3.
In the construction of the estimators, the collapsed moment condition (3) for x1it is replaced by an identical collapsed moment
condition for x2it, as in Table 6.

Table 8: Simulation results: coefficient estimates, misspecified estimators
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ M-sGMM1 0.0029 0.0258 0.0671 0.9714
M-sGMM2 0.0062 0.0273 0.0802 0.9848
M-QML1 0.0022 0.0194 0.0584 0.9817

β1 M-sGMM1 -0.0018 0.0446 0.0495 1.0080 0.0939 0.5219 0.0481 0.9728
M-sGMM2 0.0016 0.0450 0.0520 1.0001 0.1655 0.5415 0.0464 0.9763
M-QML1 0.0005 0.0339 0.0485 1.0110 0.0601 0.3932 0.0470 0.8825
HT-GMM1 0.2220 0.2333 0.7902 1.1936 -2.1780 2.1792 1.0000 1.1936
FE-IV2 0.1414 0.1554 0.5921 0.9967 -2.2586 2.2595 1.0000 0.9967

β2 M-sGMM1 -0.0021 0.0445 0.0484 1.0117 0.0920 0.5202 0.0492 0.9756
M-sGMM2 0.0017 0.0448 0.0521 1.0060 0.1661 0.5385 0.0452 0.9826
M-QML1 -0.0026 0.0347 0.0549 0.9937 0.0442 0.3809 0.0480 0.8941
HT-GMM1 0.1484 0.1626 0.5610 1.0580 -2.2516 2.2526 1.0000 1.0580
FE-IV2 0.1432 0.1572 0.6036 0.9928 -2.2568 2.2577 1.0000 0.9928

γ1 M-sGMM1 -0.0111 0.0837 0.0689 0.9738 -0.0118 0.1637 0.0554 0.9780
M-sGMM2 -0.0185 0.0873 0.0797 0.5014 0.9800 0.3594 0.0007 0.1597 0.0513 0.9965
M-QML1 -0.0064 0.0660 0.0586 0.9867 0.0008 0.1588 0.0524 0.9951
HT-GMM1 2.4017 2.4108 1.0000 1.0184 0.0017 0.2098 0.0478 1.0184
FE-IV2 2.4015 2.4102 1.0000 1.0000 0.9939 0.9938 0.0015 0.2053 0.0537 0.9939

γ2 M-sGMM1 0.1741 0.2055 0.3466 0.9747 0.9263 0.9420 0.9995 0.9701
M-sGMM2 0.1643 0.1993 0.2802 0.8543 0.9853 0.2807 0.9419 0.9567 0.9996 0.9852
M-QML1 0.1808 0.2000 0.5825 0.9827 0.9464 0.9611 0.9997 0.9799
HT-GMM1 3.3707 3.4083 0.9996 0.9477 0.9707 1.0943 0.5422 0.9477
FE-IV2 3.1865 3.2237 0.9996 0.9996 0.9460 0.9426 0.7865 0.9257 0.4268 0.9460

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is the same as in the baseline scenario. The
estimator M-sGMM1 uses the within-group averages x̄1i and x̄2i as additional regresssors. The collapsed moment condition (3) for
x1it is replaced by the moment conditions (4) for x̄1i, x̄2i, and x̄1i, f̄2i. The estimator M-sGMM2 applies the same modifications
in the second stage. The estimators HT-GMM1 and FE-IV2 constrain λ = 0. In contrast to sGMM1 and sGMM2, the collapsed
moment conditions (A.1) for yi,t−s and (A.2) for x1i,t−s and x2i,t−s are replaced by the collapsed moment conditions (3) for
x1it− x̄1i and x2it− x̄2i. For these static-model estimators, the estimates of the long-run coefficients equal those of the short-run
coefficients.
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Table 9: Simulation results: coefficient estimates, no mean stationarity
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0843 0.0873 0.9579 1.0110
sGMM2 0.2933 0.2934 1.0000 1.2324
nlGMM1 0.0003 0.0144 0.0494 1.0051
nlGMM2 0.0009 0.0109 0.0548 0.9888
QML2 0.0000 0.0097 0.0486 1.0036

β1 sGMM1 -0.0851 0.0934 0.5413 1.0694 1.6194 1.8881 0.2128 0.9938
sGMM2 -0.0051 0.0484 0.0259 1.1561 -9.4727 9.5292 1.0000 1.1630
nlGMM1 -0.0005 0.0393 0.0507 0.9970 0.0155 0.2781 0.0505 0.9936
nlGMM2 -0.0002 0.0489 0.0529 1.0000 0.0208 0.2950 0.0515 0.9920
QML2 -0.0002 0.0366 0.0492 0.9984 0.0055 0.2280 0.0500 0.9988

β2 sGMM1 0.0935 0.1020 0.5803 1.0679 3.2327 3.4992 0.9438 0.9831
sGMM2 0.0023 0.0481 0.0264 1.1553 -9.5545 9.6120 1.0000 1.1673
nlGMM1 0.0022 0.0485 0.0492 1.0032 0.0295 0.3222 0.0462 1.0008
nlGMM2 0.0011 0.0486 0.0502 1.0031 0.0267 0.2909 0.0461 0.9957
QML2 0.0005 0.0364 0.0500 1.0020 0.0089 0.2248 0.0479 1.0015

γ1 sGMM1 -0.0987 0.1071 0.6404 1.0190 1.4637 1.6476 0.4940 0.9885
sGMM2 -0.3395 0.3400 1.0000 1.0000 1.0148 1.0594 -5.8294 5.8436 1.0000 1.1921
nlGMM1 -0.0025 0.0405 0.0543 0.9921 0.0015 0.2322 0.0536 0.9817
nlGMM2 -0.0008 0.0379 0.0514 0.0658 0.9945 0.9367 0.0145 0.2100 0.0549 0.9827
QML2 0.0001 0.0374 0.0506 0.0620 0.9956 0.9481 0.0053 0.2037 0.0546 0.9809

γ2 sGMM1 0.1659 0.1928 0.4382 0.9189 3.7368 3.8115 0.9993 1.0814
sGMM2 -0.4285 0.4327 1.0000 1.0000 0.8246 0.8150 -4.8550 4.9026 0.9992 0.9198
nlGMM1 0.0018 0.0901 0.0470 1.0057 0.0210 0.4551 0.0426 1.0107
nlGMM2 -0.0014 0.0880 0.0433 0.0539 1.0080 0.9678 0.0107 0.4461 0.0439 1.0072
QML2 -0.0002 0.0862 0.0460 0.0493 1.0087 0.9883 0.0033 0.4349 0.0434 1.0078

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by setting yi0 = x1i0 = x2i0 = 0
with no burn-in period.

Table 10: Simulation results: coefficient estimates, lower variance ratio (ω = 1)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 -0.0001 0.0164 0.0506 0.9969
sGMM2 0.0021 0.0219 0.0581 0.9968
nlGMM1 -0.0008 0.0220 0.0486 1.0018
nlGMM2 0.0038 0.0293 0.0515 0.9850
QML2 -0.0004 0.0206 0.0482 1.0004

β1 sGMM1 -0.0008 0.0322 0.0489 1.0109 0.0096 0.2331 0.0509 0.9994
sGMM2 0.0017 0.0433 0.0513 1.0006 0.0781 0.4236 0.0466 0.9908
nlGMM1 -0.0001 0.0359 0.0506 1.0086 0.0126 0.2781 0.0500 0.9944
nlGMM2 0.0011 0.0456 0.0481 1.0140 0.1435 0.6457 0.0453 0.9003
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0023 0.0413 0.0511 1.0039 0.0318 0.3371 0.0480 1.0041
sGMM2 0.0019 0.0431 0.0497 1.0062 0.0790 0.4214 0.0467 0.9968
nlGMM1 0.0020 0.0456 0.0512 1.0050 0.0351 0.4204 0.0493 0.9984
nlGMM2 0.0014 0.0458 0.0488 1.0123 0.1446 0.6350 0.0446 0.9169
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0518 0.9945

γ1 sGMM1 -0.0032 0.0648 0.0543 0.9937 -0.0173 0.2120 0.0518 0.9960
sGMM2 -0.0067 0.0761 0.0564 0.2968 0.9952 0.5398 -0.0011 0.2083 0.0479 1.0081
nlGMM1 -0.0005 0.0781 0.0524 0.9961 -0.0147 0.2117 0.0537 0.9913
nlGMM2 -0.0114 0.0966 0.0493 0.3998 0.9939 0.4275 0.0011 0.2110 0.0431 1.0247
QML2 0.0016 0.0743 0.0475 0.2806 1.0047 0.5554 0.0016 0.2063 0.0467 1.0104

γ2 sGMM1 -0.0024 0.1248 0.0469 0.9942 -0.0204 0.5325 0.0515 0.9881
sGMM2 -0.0145 0.1513 0.0499 0.2272 0.9948 0.6213 -0.0648 0.5898 0.0430 0.9906
nlGMM1 -0.0010 0.1376 0.0486 0.9927 -0.0284 0.5451 0.0500 0.9795
nlGMM2 -0.0210 0.1845 0.0524 0.3193 0.9927 0.5112 -0.0995 0.6909 0.0382 0.9832
QML2 0.0019 0.1424 0.0486 0.1899 0.9961 0.6623 -0.0169 0.5456 0.0477 0.9969

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 1,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing ω from 3 to 1.
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Table 11: Simulation results: coefficient estimates, lower variance ratio (ω = 1/3)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 -0.0006 0.0147 0.0483 1.0008
sGMM2 0.0003 0.0187 0.0500 1.0020
nlGMM1 -0.0017 0.0204 0.0484 1.0064
nlGMM2 0.0006 0.0264 0.0504 0.9992
QML2 -0.0004 0.0206 0.0482 1.0003

β1 sGMM1 0.0002 0.0294 0.0470 1.0137 0.0029 0.1932 0.0503 1.0004
sGMM2 0.0018 0.0415 0.0517 1.0026 0.0409 0.3658 0.0470 0.9956
nlGMM1 0.0012 0.0339 0.0478 1.0144 0.0006 0.2341 0.0493 1.0071
nlGMM2 0.0009 0.0455 0.0490 1.0125 0.0733 0.5218 0.0518 0.9664
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0506 0.9974

β2 sGMM1 0.0019 0.0400 0.0516 1.0039 0.0182 0.3134 0.0478 1.0054
sGMM2 0.0020 0.0414 0.0512 1.0067 0.0420 0.3642 0.0466 1.0011
nlGMM1 0.0018 0.0456 0.0507 1.0045 0.0155 0.3932 0.0490 1.0013
nlGMM2 0.0013 0.0457 0.0493 1.0108 0.0749 0.5187 0.0493 0.9740
QML2 0.0003 0.0348 0.0532 0.9961 0.0263 0.3574 0.0518 0.9945

γ1 sGMM1 -0.0007 0.0712 0.0499 0.9996 -0.0123 0.2811 0.0488 0.9993
sGMM2 -0.0017 0.0767 0.0472 0.1622 1.0066 0.7148 -0.0027 0.2775 0.0455 1.0096
nlGMM1 0.0030 0.0829 0.0480 1.0084 -0.0100 0.2818 0.0479 1.0157
nlGMM2 -0.0020 0.0963 0.0441 0.2592 1.0109 0.5761 0.0001 0.2821 0.0418 1.0285
QML2 0.0015 0.0826 0.0466 0.1945 1.0079 0.6650 0.0010 0.2759 0.0454 1.0148

γ2 sGMM1 -0.0001 0.1566 0.0452 0.9988 -0.0173 0.7174 0.0462 0.9951
sGMM2 -0.0081 0.1920 0.0461 0.1919 0.9984 0.6569 -0.0652 0.8324 0.0435 0.9936
nlGMM1 0.0051 0.1684 0.0439 1.0117 -0.0113 0.7337 0.0462 1.0059
nlGMM2 -0.0066 0.2366 0.0462 0.2874 0.9995 0.5391 -0.0904 0.9844 0.0397 0.9927
QML2 0.0029 0.1899 0.0450 0.1882 0.9976 0.6652 -0.0260 0.7855 0.0445 1.0002

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 1/3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing ω from 3 to 1/3.

Table 12: Simulation results: coefficient estimates, higher variance of the unit-specific
error component

short-run coefficients long-run coefficients
Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0027 0.0212 0.0646 0.9929
sGMM2 0.0062 0.0273 0.0787 0.9856
nlGMM1 0.0033 0.0258 0.0586 0.9960
nlGMM2 0.0113 0.0355 0.0671 0.9425
QML2 -0.0004 0.0206 0.0482 1.0004

β1 sGMM1 -0.0027 0.0385 0.0552 1.0029 0.0572 0.3455 0.0535 0.9972
sGMM2 0.0014 0.0450 0.0507 0.9995 0.1652 0.5396 0.0474 0.9782
nlGMM1 -0.0025 0.0403 0.0554 0.9960 0.0814 0.4019 0.0525 0.9836
nlGMM2 0.0016 0.0459 0.0493 1.0185 0.2893 2.1651 0.0352 0.4287
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0027 0.0437 0.0525 1.0028 0.0906 0.4187 0.0463 1.0005
sGMM2 0.0019 0.0448 0.0516 1.0054 0.1673 0.5381 0.0467 0.9843
nlGMM1 0.0026 0.0458 0.0509 1.0077 0.1184 0.5090 0.0437 0.9886
nlGMM2 0.0023 0.0462 0.0474 1.0165 0.2962 1.9377 0.0337 0.4677
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0518 0.9945

γ1 sGMM1 -0.0137 0.0814 0.0705 0.9849 -0.0284 0.2519 0.0555 0.9880
sGMM2 -0.0186 0.0943 0.0811 0.3392 0.9801 0.5122 0.0011 0.2451 0.0494 1.0032
nlGMM1 -0.0149 0.0919 0.0668 0.9880 -0.0256 0.2515 0.0646 0.9663
nlGMM2 -0.0334 0.1158 0.0707 0.4141 0.9590 0.4181 0.0016 0.2562 0.0480 1.0012
QML2 0.0019 0.0790 0.0498 0.2275 1.0029 0.6187 0.0028 0.2439 0.0505 1.0028

γ2 sGMM1 -0.0129 0.1456 0.0533 0.9866 -0.0364 0.6040 0.0499 0.9800
sGMM2 -0.0305 0.1634 0.0647 0.2068 0.9867 0.6703 -0.0845 0.6266 0.0472 0.9865
nlGMM1 -0.0228 0.1582 0.0656 0.9756 -0.0828 0.6267 0.0576 0.9555
nlGMM2 -0.0507 0.1927 0.0728 0.2900 0.9717 0.5671 -0.1394 0.8532 0.0385 0.8751
QML2 0.0011 0.1449 0.0519 0.1308 0.9930 0.7660 -0.0147 0.5895 0.0497 0.9900

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1,

√
2), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.

Note: See the notes for Table 2 in the main paper. The data-generating process is modified by increasing σ2
α from 1 to 2.
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Table 13: Simulation results: coefficient estimates, higher signal-to-noise ratio
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0004 0.0101 0.0511 0.9946
sGMM2 0.0019 0.0136 0.0576 0.9967
nlGMM1 0.0003 0.0124 0.0489 1.0012
nlGMM2 0.0018 0.0153 0.0495 0.9907
QML2 -0.0003 0.0106 0.0493 1.0011

β1 sGMM1 -0.0009 0.0184 0.0522 1.0069 0.0078 0.1552 0.0528 0.9975
sGMM2 0.0008 0.0223 0.0495 1.0033 0.0466 0.2466 0.0455 0.9943
nlGMM1 -0.0005 0.0193 0.0510 1.0070 0.0118 0.1760 0.0541 0.9973
nlGMM2 0.0004 0.0227 0.0491 1.0086 0.0481 0.2761 0.0418 0.9833
QML2 0.0000 0.0171 0.0475 1.0149 0.0042 0.1767 0.0499 1.0028

β2 sGMM1 0.0014 0.0211 0.0523 1.0031 0.0210 0.1932 0.0490 1.0040
sGMM2 0.0009 0.0223 0.0500 1.0059 0.0471 0.2462 0.0455 0.9967
nlGMM1 0.0011 0.0228 0.0516 1.0048 0.0224 0.2253 0.0495 1.0037
nlGMM2 0.0005 0.0229 0.0500 1.0067 0.0486 0.2747 0.0424 0.9895
QML2 0.0001 0.0174 0.0529 0.9961 0.0048 0.1769 0.0485 1.0019

γ1 sGMM1 -0.0046 0.0475 0.0566 0.9897 -0.0170 0.1826 0.0537 0.9922
sGMM2 -0.0057 0.0539 0.0580 0.2051 0.9926 0.6566 -0.0007 0.1781 0.0490 1.0042
nlGMM1 -0.0040 0.0520 0.0543 0.9964 -0.0149 0.1824 0.0534 0.9958
nlGMM2 -0.0052 0.0577 0.0524 0.2396 0.9978 0.6139 0.0016 0.1781 0.0482 1.0094
QML2 0.0012 0.0477 0.0487 0.1475 1.0045 0.7442 0.0019 0.1774 0.0492 1.0040

γ2 sGMM1 -0.0030 0.0995 0.0489 0.9861 -0.0137 0.4436 0.0516 0.9811
sGMM2 -0.0128 0.1122 0.0490 0.1587 0.9907 0.7189 -0.0468 0.4656 0.0471 0.9873
nlGMM1 -0.0067 0.1059 0.0471 0.9893 -0.0344 0.4581 0.0509 0.9803
nlGMM2 -0.0108 0.1203 0.0502 0.1948 0.9913 0.6704 -0.0412 0.4848 0.0472 0.9898
QML2 0.0008 0.1006 0.0525 0.1115 0.9913 0.8031 -0.0058 0.4366 0.0496 0.9897

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 2, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by increasing τ from 0.5 to 2.

Table 14: Simulation results: coefficient estimates, swapped correlations
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0023 0.0213 0.0593 0.9921
sGMM2 0.0065 0.0273 0.0829 0.9831
nlGMM1 0.0043 0.0290 0.0585 0.9937
nlGMM2 0.0095 0.0342 0.0631 0.9504
QML2 -0.0004 0.0206 0.0482 1.0003

β1 sGMM1 -0.0027 0.0417 0.0513 0.9980 0.0553 0.3884 0.0481 0.9929
sGMM2 0.0020 0.0452 0.0502 0.9993 0.1728 0.5438 0.0457 0.9753
nlGMM1 -0.0013 0.0439 0.0517 0.9982 0.1246 0.5297 0.0479 0.9799
nlGMM2 0.0018 0.0461 0.0492 1.0151 0.3072 2.4508 0.0387 0.4135
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0029 0.0432 0.0527 1.0029 0.0860 0.4154 0.0468 0.9997
sGMM2 0.0017 0.0448 0.0517 1.0059 0.1711 0.5400 0.0461 0.9814
nlGMM1 0.0030 0.0459 0.0519 1.0075 0.1526 0.5805 0.0429 0.9800
nlGMM2 0.0019 0.0460 0.0493 1.0141 0.3044 2.2015 0.0367 0.4454
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0518 0.9945

γ1 sGMM1 -0.0109 0.0741 0.0642 0.9856 -0.0202 0.1842 0.0540 0.9894
sGMM2 -0.0196 0.0884 0.0816 0.4593 0.9778 0.4025 0.0003 0.1806 0.0477 1.0086
nlGMM1 -0.0162 0.0943 0.0613 0.9937 -0.0178 0.1856 0.0557 0.9915
nlGMM2 -0.0284 0.1079 0.0626 0.5121 0.9603 0.3313 0.0034 0.2118 0.0459 0.9542
QML2 0.0017 0.0714 0.0479 0.3305 1.0025 0.4978 0.0021 0.1775 0.0502 1.0067

γ2 sGMM1 -0.0117 0.1486 0.0548 0.9875 -0.0520 0.5524 0.0491 0.9805
sGMM2 -0.0406 0.1817 0.0701 0.4449 0.9844 0.4129 -0.1606 0.6593 0.0429 0.9822
nlGMM1 -0.0276 0.1894 0.0633 0.9875 -0.1335 0.6801 0.0436 0.9759
nlGMM2 -0.0567 0.2228 0.0627 0.5011 0.9655 0.3377 -0.2818 2.3854 0.0320 0.4688
QML2 0.0029 0.1424 0.0507 0.2999 0.9990 0.5251 -0.0191 0.5087 0.0450 0.9988

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.4, 0.2, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by swapping the correlations
(ρx1,f2, ρz,f2) from (0.2, 0.4) to (0.4, 0.2).
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Table 15: Simulation results: coefficient estimates, equalized correlations
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0016 0.0205 0.0570 0.9982
sGMM2 0.0062 0.0273 0.0804 0.9845
nlGMM1 0.0024 0.0264 0.0525 1.0031
nlGMM2 0.0091 0.0341 0.0620 0.9540
QML2 -0.0004 0.0206 0.0482 1.0003

β1 sGMM1 -0.0031 0.0390 0.0534 1.0043 0.0378 0.3441 0.0485 1.0012
sGMM2 0.0016 0.0449 0.0512 1.0003 0.1653 0.5414 0.0464 0.9763
nlGMM1 -0.0013 0.0408 0.0521 1.0038 0.0782 0.4249 0.0477 0.9972
nlGMM2 0.0014 0.0458 0.0498 1.0159 0.2532 2.4868 0.0390 0.4405
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0027 0.0431 0.0522 1.0044 0.0717 0.4003 0.0450 1.0056
sGMM2 0.0017 0.0448 0.0516 1.0059 0.1659 0.5387 0.0457 0.9822
nlGMM1 0.0025 0.0458 0.0512 1.0065 0.1070 0.5120 0.0443 0.9962
nlGMM2 0.0017 0.0460 0.0486 1.0136 0.2536 2.3898 0.0375 0.4520
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0518 0.9945

γ1 sGMM1 -0.0091 0.0721 0.0617 0.9945 -0.0215 0.1861 0.0497 1.0038
sGMM2 -0.0187 0.0887 0.0774 0.4492 0.9809 0.4103 0.0002 0.1837 0.0440 1.0194
nlGMM1 -0.0111 0.0874 0.0597 1.0037 -0.0194 0.1879 0.0517 1.0024
nlGMM2 -0.0271 0.1078 0.0595 0.4994 0.9654 0.3400 0.0003 0.2547 0.0418 0.8802
QML2 0.0017 0.0716 0.0472 0.3220 1.0053 0.5072 0.0018 0.1798 0.0467 1.0173

γ2 sGMM1 -0.0036 0.1730 0.0422 0.9883 -0.0168 0.7273 0.0447 0.9829
sGMM2 -0.0391 0.2101 0.0567 0.2648 0.9829 0.5873 -0.1586 0.8545 0.0369 0.9774
nlGMM1 -0.0216 0.2000 0.0506 0.9886 -0.1119 0.8116 0.0415 0.9762
nlGMM2 -0.0541 0.2471 0.0557 0.3350 0.9753 0.5014 -0.2398 1.9361 0.0304 0.6558
QML2 0.0027 0.1753 0.0454 0.1592 0.9956 0.7044 -0.0201 0.7199 0.0407 0.9911

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.4, 0.2, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by equalizing the correlations
(ρx1,f2, ρz,f2) from (0.2, 0.4) to (0.2, 0.2).

Table 16: Simulation results: coefficient estimates, higher persistence (λ = 0.9)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0020 0.0144 0.0729 0.9876
sGMM2 0.0088 0.0241 0.1394 0.9716
nlGMM1 0.0019 0.0193 0.0587 1.0036
nlGMM2 0.0129 0.0346 0.0909 0.9520
QML2 -0.0003 0.0209 0.0522 0.9892

β1 sGMM1 -0.0046 0.0337 0.0637 1.0033 0.1105 0.5713 0.0511 0.9971
sGMM2 0.0011 0.0431 0.0529 0.9986 0.7567 1.7903 0.0442 0.8764
nlGMM1 -0.0037 0.0390 0.0539 0.9997 0.1705 0.7474 0.0401 0.9976
nlGMM2 0.0011 0.0451 0.0516 1.0091 2.8631 84.2138 0.0454 6.3901
QML2 -0.0001 0.0326 0.0482 1.0117 0.2290 1.7042 0.0714 0.7258

β2 sGMM1 0.0028 0.0401 0.0512 1.0059 0.2182 0.8502 0.0468 0.9982
sGMM2 0.0012 0.0429 0.0531 1.0048 0.7565 1.7833 0.0431 0.8799
nlGMM1 0.0016 0.0447 0.0524 1.0059 0.2862 1.1592 0.0440 0.9767
nlGMM2 0.0013 0.0451 0.0509 1.0098 2.7056 79.0527 0.0422 6.3184
QML2 0.0001 0.0332 0.0528 0.9949 0.2309 1.7729 0.0712 0.7013

γ1 sGMM1 -0.0118 0.0683 0.0796 0.9848 -0.0320 0.2685 0.0545 0.9947
sGMM2 -0.0387 0.1075 0.1398 0.6823 0.9693 0.2418 -0.0004 0.2745 0.0421 1.0280
nlGMM1 -0.0111 0.0879 0.0615 1.0018 -0.0300 0.2709 0.0518 1.0063
nlGMM2 -0.0562 0.1528 0.0882 0.7389 0.9543 0.1713 0.0047 3.1828 0.0318 6.2864
QML2 0.0015 0.0951 0.0475 0.5867 0.9910 0.2759 0.0035 0.2682 0.0448 1.0205

γ2 sGMM1 -0.0109 0.1003 0.0629 0.9886 -0.0415 0.6767 0.0500 0.9871
sGMM2 -0.0565 0.1607 0.1227 0.5290 0.9752 0.3700 -0.3217 1.0212 0.0361 0.9431
nlGMM1 -0.0146 0.1183 0.0664 1.0066 -0.0934 0.7050 0.0485 0.9944
nlGMM2 -0.0801 0.2241 0.0886 0.6080 0.9595 0.2671 -1.0603 27.3269 0.0226 6.2834
QML2 0.0016 0.1428 0.0498 0.4047 0.9925 0.4215 -0.0923 1.0761 0.0437 0.8040

Simulation design according to the data-generating process in Section 6.1: λ = 0.9, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by increasing λ, φ1, and φ2 from 0.8
to 0.9, respectively.
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Table 17: Simulation results: coefficient estimates, lower persistence (λ = 0.7)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0014 0.0225 0.0529 1.0030
sGMM2 0.0045 0.0285 0.0593 0.9905
nlGMM1 0.0015 0.0273 0.0521 1.0016
nlGMM2 0.0066 0.0316 0.0503 0.9779
QML2 -0.0005 0.0206 0.0478 1.0033

β1 sGMM1 -0.0012 0.0394 0.0507 1.0048 0.0190 0.2090 0.0523 0.9994
sGMM2 0.0017 0.0462 0.0503 1.0017 0.0649 0.2996 0.0469 0.9838
nlGMM1 -0.0006 0.0406 0.0507 1.0035 0.0273 0.2347 0.0546 0.9933
nlGMM2 0.0014 0.0468 0.0481 1.0155 0.0888 0.3475 0.0370 0.9571
QML2 0.0001 0.0357 0.0458 1.0155 0.0071 0.1985 0.0498 1.0062

β2 sGMM1 0.0026 0.0448 0.0510 1.0022 0.0340 0.2456 0.0499 1.0022
sGMM2 0.0019 0.0460 0.0507 1.0076 0.0657 0.2984 0.0440 0.9891
nlGMM1 0.0028 0.0469 0.0511 1.0060 0.0425 0.2858 0.0491 0.9964
nlGMM2 0.0018 0.0470 0.0491 1.0144 0.0903 0.3472 0.0366 0.9600
QML2 0.0004 0.0363 0.0523 0.9985 0.0082 0.2003 0.0500 0.9977

γ1 sGMM1 -0.0080 0.0692 0.0593 0.9948 -0.0161 0.1455 0.0555 0.9894
sGMM2 -0.0106 0.0786 0.0607 0.3062 0.9887 0.5339 0.0006 0.1410 0.0504 1.0015
nlGMM1 -0.0078 0.0779 0.0586 0.9993 -0.0141 0.1452 0.0566 0.9855
nlGMM2 -0.0155 0.0853 0.0545 0.3355 0.9906 0.4923 0.0012 0.1408 0.0496 1.0059
QML2 0.0016 0.0648 0.0492 0.2031 1.0051 0.6517 0.0014 0.1405 0.0500 1.0017

γ2 sGMM1 -0.0069 0.1239 0.0498 0.9900 -0.0168 0.3429 0.0510 0.9814
sGMM2 -0.0173 0.1343 0.0559 0.1774 0.9881 0.7050 -0.0299 0.3457 0.0473 0.9866
nlGMM1 -0.0117 0.1345 0.0530 0.9890 -0.0337 0.3542 0.0521 0.9736
nlGMM2 -0.0232 0.1432 0.0540 0.2124 0.9911 0.6605 -0.0359 0.3571 0.0460 0.9907
QML2 0.0007 0.1176 0.0503 0.1125 0.9935 0.8106 -0.0054 0.3302 0.0496 0.9891

Simulation design according to the data-generating process in Section 6.1: λ = 0.7, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.7, respectively.

Table 18: Simulation results: coefficient estimates, lower persistence (λ = 0.6)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0013 0.0243 0.0548 1.0057
sGMM2 0.0033 0.0289 0.0544 0.9937
nlGMM1 0.0015 0.0282 0.0520 1.0027
nlGMM2 0.0053 0.0297 0.0511 0.9947
QML2 -0.0005 0.0209 0.0511 1.0016

β1 sGMM1 -0.0007 0.0417 0.0485 1.0043 0.0115 0.1565 0.0524 0.9978
sGMM2 0.0016 0.0473 0.0495 1.0029 0.0321 0.2002 0.0470 0.9874
nlGMM1 -0.0003 0.0426 0.0488 1.0030 0.0161 0.1690 0.0516 0.9950
nlGMM2 0.0013 0.0480 0.0476 1.0130 0.0423 0.2094 0.0426 0.9909
QML2 0.0001 0.0374 0.0452 1.0152 0.0027 0.1370 0.0499 1.0050

β2 sGMM1 0.0028 0.0462 0.0518 1.0023 0.0211 0.1766 0.0475 0.9995
sGMM2 0.0020 0.0472 0.0503 1.0084 0.0329 0.1992 0.0482 0.9938
nlGMM1 0.0031 0.0481 0.0522 1.0054 0.0260 0.1965 0.0492 0.9967
nlGMM2 0.0019 0.0482 0.0500 1.0121 0.0437 0.2102 0.0430 0.9899
QML2 0.0004 0.0379 0.0505 1.0008 0.0036 0.1384 0.0503 0.9949

γ1 sGMM1 -0.0075 0.0688 0.0584 0.9972 -0.0126 0.1220 0.0558 0.9893
sGMM2 -0.0064 0.0731 0.0567 0.2117 0.9958 0.6427 0.0008 0.1181 0.0512 1.0003
nlGMM1 -0.0074 0.0742 0.0583 1.0004 -0.0108 0.1217 0.0553 0.9863
nlGMM2 -0.0102 0.0750 0.0547 0.2254 1.0053 0.6269 0.0011 0.1180 0.0502 1.0022
QML2 0.0015 0.0630 0.0507 0.1410 1.0039 0.7501 0.0012 0.1179 0.0500 1.0006

γ2 sGMM1 -0.0062 0.1288 0.0491 0.9904 -0.0121 0.2792 0.0504 0.9837
sGMM2 -0.0117 0.1327 0.0490 0.1184 0.9897 0.7946 -0.0161 0.2791 0.0485 0.9875
nlGMM1 -0.0104 0.1365 0.0512 0.9877 -0.0222 0.2874 0.0519 0.9757
nlGMM2 -0.0161 0.1355 0.0506 0.1327 0.9969 0.7770 -0.0181 0.2829 0.0473 0.9910
QML2 0.0001 0.1205 0.0485 0.0853 0.9927 0.8794 -0.0039 0.2711 0.0499 0.9889

Simulation design according to the data-generating process in Section 6.1: λ = 0.6, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.6, respectively.
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Table 19: Simulation results: coefficient estimates, lower persistence (λ = 0.5)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0012 0.0254 0.0530 1.0053
sGMM2 0.0026 0.0289 0.0525 0.9953
nlGMM1 0.0015 0.0283 0.0523 1.0037
nlGMM2 0.0044 0.0285 0.0516 0.9995
QML2 -0.0006 0.0211 0.0521 0.9988

β1 sGMM1 -0.0004 0.0438 0.0472 1.0042 0.0076 0.1242 0.0518 0.9969
sGMM2 0.0015 0.0485 0.0473 1.0041 0.0183 0.1482 0.0511 0.9894
nlGMM1 -0.0003 0.0446 0.0476 1.0032 0.0101 0.1304 0.0507 0.9978
nlGMM2 0.0014 0.0493 0.0453 1.0104 0.0243 0.1495 0.0480 0.9968
QML2 0.0000 0.0390 0.0443 1.0144 0.0011 0.1053 0.0493 1.0031

β2 sGMM1 0.0028 0.0475 0.0529 1.0024 0.0146 0.1365 0.0488 0.9974
sGMM2 0.0020 0.0484 0.0512 1.0081 0.0191 0.1474 0.0492 0.9971
nlGMM1 0.0032 0.0494 0.0534 1.0043 0.0178 0.1470 0.0482 0.9972
nlGMM2 0.0020 0.0495 0.0515 1.0088 0.0256 0.1504 0.0472 0.9939
QML2 0.0004 0.0395 0.0509 1.0025 0.0020 0.1064 0.0519 0.9936

γ1 sGMM1 -0.0070 0.0686 0.0563 0.9974 -0.0100 0.1055 0.0556 0.9898
sGMM2 -0.0041 0.0700 0.0535 0.1584 0.9997 0.7264 0.0008 0.1022 0.0512 0.9998
nlGMM1 -0.0068 0.0716 0.0567 1.0010 -0.0083 0.1052 0.0546 0.9888
nlGMM2 -0.0072 0.0701 0.0542 0.1610 1.0078 0.7251 0.0010 0.1021 0.0507 1.0008
QML2 0.0015 0.0627 0.0490 0.1093 1.0027 0.8143 0.0010 0.1021 0.0506 1.0000

γ2 sGMM1 -0.0055 0.1312 0.0488 0.9914 -0.0089 0.2343 0.0509 0.9865
sGMM2 -0.0088 0.1332 0.0495 0.0933 0.9907 0.8537 -0.0103 0.2363 0.0507 0.9885
nlGMM1 -0.0086 0.1370 0.0502 0.9882 -0.0144 0.2409 0.0507 0.9791
nlGMM2 -0.0123 0.1338 0.0505 0.0973 0.9964 0.8480 -0.0113 0.2382 0.0485 0.9912
QML2 -0.0004 0.1243 0.0495 0.0711 0.9920 0.9180 -0.0034 0.2316 0.0502 0.9890

Simulation design according to the data-generating process in Section 6.1: λ = 0.5, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.5, respectively.

Table 20: Simulation results: coefficient estimates, lower persistence (λ = 0.4)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0011 0.0260 0.0518 1.0038
sGMM2 0.0021 0.0288 0.0510 0.9959
nlGMM1 0.0015 0.0280 0.0491 1.0040
nlGMM2 0.0037 0.0275 0.0510 0.9994
QML2 -0.0005 0.0213 0.0515 0.9972

β1 sGMM1 -0.0003 0.0457 0.0474 1.0041 0.0053 0.1027 0.0524 0.9968
sGMM2 0.0015 0.0497 0.0470 1.0045 0.0116 0.1172 0.0500 0.9909
nlGMM1 -0.0003 0.0465 0.0472 1.0034 0.0065 0.1059 0.0517 0.9998
nlGMM2 0.0014 0.0505 0.0474 1.0083 0.0154 0.1165 0.0496 0.9975
QML2 -0.0001 0.0407 0.0441 1.0132 0.0005 0.0864 0.0483 1.0020

β2 sGMM1 0.0028 0.0488 0.0516 1.0022 0.0108 0.1107 0.0488 0.9965
sGMM2 0.0020 0.0497 0.0492 1.0072 0.0124 0.1166 0.0503 0.9991
nlGMM1 0.0034 0.0508 0.0531 1.0029 0.0131 0.1168 0.0491 0.9974
nlGMM2 0.0021 0.0509 0.0526 1.0056 0.0166 0.1173 0.0500 0.9934
QML2 0.0004 0.0411 0.0496 1.0036 0.0013 0.0871 0.0522 0.9941

γ1 sGMM1 -0.0065 0.0683 0.0546 0.9971 -0.0080 0.0928 0.0557 0.9906
sGMM2 -0.0028 0.0682 0.0528 0.1268 1.0013 0.7890 0.0008 0.0901 0.0512 0.9996
nlGMM1 -0.0061 0.0698 0.0553 1.0014 -0.0065 0.0926 0.0540 0.9916
nlGMM2 -0.0052 0.0677 0.0545 0.1240 1.0065 0.7947 0.0009 0.0900 0.0507 1.0001
QML2 0.0014 0.0630 0.0486 0.0930 1.0022 0.8581 0.0009 0.0900 0.0511 0.9996

γ2 sGMM1 -0.0048 0.1318 0.0480 0.9922 -0.0065 0.2003 0.0509 0.9887
sGMM2 -0.0071 0.1341 0.0478 0.0790 0.9914 0.8935 -0.0075 0.2054 0.0509 0.9892
nlGMM1 -0.0066 0.1364 0.0498 0.9889 -0.0088 0.2059 0.0511 0.9821
nlGMM2 -0.0099 0.1341 0.0477 0.0812 0.9955 0.8925 -0.0080 0.2066 0.0488 0.9915
QML2 -0.0008 0.1277 0.0498 0.0642 0.9915 0.9415 -0.0031 0.2024 0.0503 0.9890

Simulation design according to the data-generating process in Section 6.1: λ = 0.4, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.4, respectively.
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Table 21: Simulation results: coefficient estimates, lower persistence (λ = 0.3)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0010 0.0263 0.0491 1.0020
sGMM2 0.0017 0.0284 0.0520 0.9961
nlGMM1 0.0014 0.0275 0.0506 1.0038
nlGMM2 0.0031 0.0267 0.0509 0.9984
QML2 -0.0005 0.0214 0.0505 0.9972

β1 sGMM1 -0.0003 0.0475 0.0477 1.0036 0.0037 0.0877 0.0532 0.9966
sGMM2 0.0013 0.0509 0.0475 1.0041 0.0079 0.0970 0.0508 0.9920
nlGMM1 -0.0004 0.0484 0.0468 1.0033 0.0043 0.0894 0.0513 1.0006
nlGMM2 0.0014 0.0519 0.0471 1.0062 0.0104 0.0958 0.0497 0.9973
QML2 -0.0001 0.0424 0.0435 1.0118 0.0002 0.0739 0.0481 1.0018

β2 sGMM1 0.0029 0.0501 0.0531 1.0019 0.0083 0.0930 0.0496 0.9963
sGMM2 0.0019 0.0510 0.0487 1.0061 0.0087 0.0965 0.0513 1.0003
nlGMM1 0.0035 0.0522 0.0520 1.0014 0.0101 0.0969 0.0525 0.9976
nlGMM2 0.0021 0.0522 0.0525 1.0030 0.0115 0.0966 0.0502 0.9931
QML2 0.0004 0.0427 0.0498 1.0043 0.0010 0.0744 0.0510 0.9959

γ1 sGMM1 -0.0060 0.0679 0.0564 0.9971 -0.0065 0.0826 0.0554 0.9915
sGMM2 -0.0019 0.0670 0.0503 0.1070 1.0020 0.8360 0.0008 0.0803 0.0514 0.9994
nlGMM1 -0.0054 0.0686 0.0557 1.0019 -0.0051 0.0825 0.0534 0.9941
nlGMM2 -0.0037 0.0663 0.0537 0.1032 1.0050 0.8443 0.0008 0.0803 0.0511 0.9998
QML2 0.0012 0.0632 0.0501 0.0802 1.0022 0.8894 0.0008 0.0803 0.0508 0.9994

γ2 sGMM1 -0.0041 0.1309 0.0477 0.9925 -0.0047 0.1731 0.0514 0.9900
sGMM2 -0.0061 0.1351 0.0474 0.0696 0.9917 0.9209 -0.0059 0.1814 0.0501 0.9896
nlGMM1 -0.0047 0.1348 0.0509 0.9894 -0.0049 0.1783 0.0509 0.9843
nlGMM2 -0.0082 0.1348 0.0477 0.0701 0.9949 0.9216 -0.0061 0.1822 0.0486 0.9917
QML2 -0.0013 0.1303 0.0492 0.0591 0.9910 0.9567 -0.0030 0.1794 0.0506 0.9889

Simulation design according to the data-generating process in Section 6.1: λ = 0.3, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.3, respectively.

Table 22: Simulation results: coefficient estimates, lower persistence (λ = 0.2)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0010 0.0263 0.0495 1.0006
sGMM2 0.0015 0.0279 0.0521 0.9966
nlGMM1 0.0013 0.0269 0.0485 1.0038
nlGMM2 0.0026 0.0259 0.0514 0.9980
QML2 -0.0004 0.0214 0.0503 0.9980

β1 sGMM1 -0.0003 0.0493 0.0479 1.0027 0.0027 0.0767 0.0526 0.9960
sGMM2 0.0012 0.0523 0.0487 1.0028 0.0056 0.0831 0.0513 0.9925
nlGMM1 -0.0005 0.0503 0.0471 1.0026 0.0029 0.0777 0.0513 1.0005
nlGMM2 0.0014 0.0532 0.0480 1.0044 0.0073 0.0819 0.0489 0.9968
QML2 -0.0002 0.0441 0.0456 1.0102 0.0001 0.0651 0.0478 1.0018

β2 sGMM1 0.0029 0.0514 0.0516 1.0018 0.0067 0.0803 0.0503 0.9970
sGMM2 0.0019 0.0524 0.0497 1.0052 0.0064 0.0826 0.0508 1.0014
nlGMM1 0.0035 0.0535 0.0514 1.0003 0.0080 0.0830 0.0509 0.9979
nlGMM2 0.0022 0.0536 0.0511 1.0013 0.0083 0.0825 0.0517 0.9937
QML2 0.0004 0.0444 0.0486 1.0049 0.0009 0.0654 0.0505 0.9981

γ1 sGMM1 -0.0054 0.0673 0.0566 0.9976 -0.0053 0.0741 0.0549 0.9925
sGMM2 -0.0013 0.0661 0.0496 0.0898 1.0026 0.8717 0.0007 0.0722 0.0516 0.9993
nlGMM1 -0.0048 0.0675 0.0550 1.0026 -0.0040 0.0740 0.0521 0.9961
nlGMM2 -0.0026 0.0653 0.0527 0.0891 1.0041 0.8804 0.0007 0.0721 0.0513 0.9995
QML2 0.0011 0.0632 0.0492 0.0750 1.0024 0.9126 0.0008 0.0722 0.0510 0.9993

γ2 sGMM1 -0.0034 0.1286 0.0498 0.9922 -0.0034 0.1507 0.0514 0.9904
sGMM2 -0.0054 0.1355 0.0481 0.0632 0.9917 0.9401 -0.0048 0.1618 0.0500 0.9897
nlGMM1 -0.0028 0.1324 0.0514 0.9895 -0.0022 0.1556 0.0521 0.9856
nlGMM2 -0.0069 0.1352 0.0480 0.0631 0.9945 0.9413 -0.0049 0.1625 0.0477 0.9917
QML2 -0.0017 0.1320 0.0489 0.0570 0.9904 0.9670 -0.0028 0.1604 0.0508 0.9888

Simulation design according to the data-generating process in Section 6.1: λ = 0.2, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.2, respectively.
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Table 23: Simulation results: coefficient estimates, lower persistence (λ = 0.1)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0009 0.0260 0.0504 1.0000
sGMM2 0.0012 0.0273 0.0536 0.9978
nlGMM1 0.0012 0.0261 0.0519 1.0040
nlGMM2 0.0022 0.0251 0.0532 0.9982
QML2 -0.0003 0.0213 0.0504 0.9990

β1 sGMM1 -0.0003 0.0511 0.0498 1.0015 0.0019 0.0684 0.0518 0.9954
sGMM2 0.0011 0.0537 0.0499 1.0011 0.0040 0.0729 0.0532 0.9926
nlGMM1 -0.0006 0.0521 0.0486 1.0017 0.0019 0.0691 0.0506 0.9998
nlGMM2 0.0013 0.0546 0.0491 1.0027 0.0053 0.0720 0.0497 0.9964
QML2 -0.0003 0.0459 0.0481 1.0087 0.0001 0.0586 0.0474 1.0018

β2 sGMM1 0.0029 0.0528 0.0505 1.0021 0.0055 0.0708 0.0517 0.9983
sGMM2 0.0019 0.0537 0.0493 1.0046 0.0048 0.0725 0.0497 1.0027
nlGMM1 0.0036 0.0549 0.0505 0.9995 0.0066 0.0729 0.0527 0.9982
nlGMM2 0.0022 0.0549 0.0496 1.0002 0.0062 0.0723 0.0516 0.9949
QML2 0.0005 0.0460 0.0497 1.0055 0.0009 0.0588 0.0516 1.0004

γ1 sGMM1 -0.0049 0.0664 0.0539 0.9987 -0.0043 0.0668 0.0547 0.9935
sGMM2 -0.0008 0.0650 0.0505 0.0795 1.0034 0.8996 0.0007 0.0651 0.0519 0.9992
nlGMM1 -0.0042 0.0663 0.0550 1.0034 -0.0032 0.0667 0.0516 0.9976
nlGMM2 -0.0018 0.0644 0.0528 0.0794 1.0037 0.9073 0.0007 0.0651 0.0514 0.9994
QML2 0.0009 0.0630 0.0509 0.0695 1.0026 0.9303 0.0007 0.0651 0.0512 0.9992

γ2 sGMM1 -0.0027 0.1251 0.0497 0.9915 -0.0024 0.1316 0.0513 0.9902
sGMM2 -0.0048 0.1354 0.0489 0.0598 0.9915 0.9538 -0.0041 0.1453 0.0503 0.9897
nlGMM1 -0.0013 0.1291 0.0530 0.9892 -0.0004 0.1365 0.0526 0.9861
nlGMM2 -0.0060 0.1351 0.0475 0.0597 0.9940 0.9549 -0.0041 0.1458 0.0481 0.9917
QML2 -0.0020 0.1327 0.0498 0.0551 0.9899 0.9743 -0.0026 0.1442 0.0511 0.9887

Simulation design according to the data-generating process in Section 6.1: λ = 0.1, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0.1, respectively.

Table 24: Simulation results: coefficient estimates, no persistence (λ = 0)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0008 0.0255 0.0513 1.0000
sGMM2 0.0010 0.0265 0.0539 0.9995
nlGMM1 0.0010 0.0253 0.0525 1.0043
nlGMM2 0.0018 0.0244 0.0542 0.9986
QML2 -0.0002 0.0210 0.0485 0.9997

β1 sGMM1 -0.0003 0.0528 0.0493 1.0001 0.0014 0.0619 0.0487 0.9947
sGMM2 0.0010 0.0552 0.0504 0.9991 0.0030 0.0653 0.0529 0.9923
nlGMM1 -0.0006 0.0539 0.0493 1.0007 0.0012 0.0625 0.0505 0.9989
nlGMM2 0.0013 0.0560 0.0493 1.0014 0.0039 0.0645 0.0503 0.9961
QML2 -0.0003 0.0476 0.0487 1.0073 0.0001 0.0537 0.0478 1.0018

β2 sGMM1 0.0029 0.0541 0.0497 1.0026 0.0046 0.0635 0.0479 1.0000
sGMM2 0.0018 0.0551 0.0501 1.0043 0.0037 0.0648 0.0479 1.0040
nlGMM1 0.0037 0.0563 0.0515 0.9991 0.0055 0.0653 0.0529 0.9985
nlGMM2 0.0022 0.0563 0.0501 0.9997 0.0048 0.0647 0.0521 0.9962
QML2 0.0005 0.0477 0.0487 1.0062 0.0009 0.0536 0.0504 1.0025

γ1 sGMM1 -0.0044 0.0652 0.0525 0.9999 -0.0036 0.0603 0.0538 0.9944
sGMM2 -0.0005 0.0638 0.0509 0.0718 1.0042 0.9215 0.0006 0.0589 0.0516 0.9990
nlGMM1 -0.0037 0.0650 0.0543 1.0040 -0.0026 0.0602 0.0524 0.9986
nlGMM2 -0.0012 0.0633 0.0527 0.0722 1.0037 0.9277 0.0006 0.0589 0.0514 0.9992
QML2 0.0008 0.0624 0.0506 0.0662 1.0027 0.9441 0.0006 0.0589 0.0512 0.9991

γ2 sGMM1 -0.0021 0.1204 0.0510 0.9905 -0.0016 0.1149 0.0511 0.9896
sGMM2 -0.0044 0.1344 0.0488 0.0564 0.9910 0.9639 -0.0035 0.1309 0.0498 0.9894
nlGMM1 -0.0001 0.1249 0.0527 0.9886 0.0007 0.1199 0.0538 0.9862
nlGMM2 -0.0053 0.1342 0.0475 0.0570 0.9934 0.9646 -0.0035 0.1312 0.0487 0.9915
QML2 -0.0022 0.1323 0.0501 0.0539 0.9894 0.9797 -0.0025 0.1300 0.0509 0.9886

Simulation design according to the data-generating process in Section 6.1: λ = 0, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: See the notes for Table 2 in the main paper. The data-generating process is modified by reducing λ, φ1, and φ2 from 0.8
to 0, respectively.
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Table 25: Simulation results: coefficient estimates, smaller sample size (N = 100)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0064 0.0385 0.0814 0.9869
sGMM2 0.0229 0.0557 0.1486 0.9576
nlGMM1 0.0081 0.0492 0.0772 0.9740
nlGMM2 0.0364 0.0739 0.1264 0.9295
QML2 0.0005 0.0405 0.0498 0.9674

β1 sGMM1 -0.0103 0.0740 0.0649 0.9867 0.1452 0.6612 0.0549 0.9834
sGMM2 0.0038 0.0893 0.0548 0.9943 0.8018 4.1892 0.0419 0.5544
nlGMM1 -0.0120 0.0792 0.0683 0.9826 0.2486 0.9428 0.0524 0.9133
nlGMM2 0.0030 0.0914 0.0553 1.0055 -17.3201 1843.3787 0.0349 278.2778
QML2 0.0002 0.0652 0.0489 0.9985 0.1416 1.1905 0.0649 0.7527

β2 sGMM1 0.0083 0.0850 0.0590 0.9905 0.2727 0.8865 0.0469 0.9706
sGMM2 0.0051 0.0903 0.0607 0.9815 0.8131 4.5151 0.0425 0.5315
nlGMM1 0.0063 0.0903 0.0599 0.9871 0.4132 1.3552 0.0504 0.8818
nlGMM2 0.0034 0.0921 0.0565 0.9952 -20.5159 2171.7355 0.0376 278.2973
QML2 0.0003 0.0653 0.0513 0.9950 0.1429 1.1083 0.0655 0.7934

γ1 sGMM1 -0.0317 0.1367 0.0931 0.9865 -0.0640 0.3808 0.0657 0.9822
sGMM2 -0.0718 0.1783 0.1479 0.5078 0.9630 0.3872 -0.0092 0.4721 0.0473 0.9321
nlGMM1 -0.0356 0.1657 0.0901 0.9693 -0.0587 0.3906 0.0670 0.9946
nlGMM2 -0.1113 0.2309 0.1323 0.5819 0.9402 0.3042 0.1688 22.0373 0.0382 273.6874
QML2 -0.0022 0.1415 0.0526 0.3327 0.9743 0.4882 -0.0045 0.3648 0.0543 0.9985

γ2 sGMM1 -0.0240 0.2307 0.0637 0.9618 -0.0623 0.9391 0.0529 0.9394
sGMM2 -0.1045 0.2894 0.1208 0.3615 0.9571 0.5383 -0.3355 1.6760 0.0320 0.8011
nlGMM1 -0.0372 0.2573 0.0824 0.9632 -0.1259 1.0028 0.0496 0.9523
nlGMM2 -0.1563 0.3531 0.1177 0.4516 0.9583 0.4481 2.0152 237.5422 0.0222 275.7977
QML2 -0.0049 0.2412 0.0465 0.2019 0.9725 0.6569 -0.0687 1.0264 0.0415 0.9301

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3, τ = 0.5,
µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 100.
Note: See the notes for Table 2 in the main paper. The cross-sectional sample size N is reduced from 350 to 100.

Table 26: Simulation results: coefficient estimates, larger sample size (N = 650)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0009 0.0143 0.0547 0.9902
sGMM2 0.0036 0.0198 0.0695 0.9809
nlGMM1 0.0008 0.0182 0.0543 0.9929
nlGMM2 0.0037 0.0228 0.0538 0.9785
QML2 0.0001 0.0151 0.0478 1.0023

β1 sGMM1 -0.0016 0.0269 0.0526 0.9987 0.0189 0.2237 0.0547 0.9900
sGMM2 0.0004 0.0324 0.0475 1.0064 0.0880 0.3676 0.0490 0.9834
nlGMM1 -0.0011 0.0283 0.0511 1.0017 0.0275 0.2619 0.0513 0.9841
nlGMM2 0.0002 0.0333 0.0463 1.0111 0.1012 0.4399 0.0423 0.9648
QML2 0.0002 0.0252 0.0458 1.0066 0.0184 0.2573 0.0464 0.9996

β2 sGMM1 0.0016 0.0310 0.0493 1.0132 0.0386 0.2797 0.0505 0.9955
sGMM2 0.0011 0.0322 0.0462 1.0137 0.0918 0.3702 0.0481 0.9797
nlGMM1 0.0011 0.0329 0.0466 1.0141 0.0443 0.3383 0.0466 0.9925
nlGMM2 0.0007 0.0330 0.0467 1.0201 0.1037 0.4420 0.0434 0.9624
QML2 0.0002 0.0252 0.0481 1.0080 0.0184 0.2562 0.0479 1.0039

γ1 sGMM1 -0.0053 0.0505 0.0610 0.9881 -0.0122 0.1324 0.0537 0.9944
sGMM2 -0.0110 0.0641 0.0719 0.4394 0.9773 0.4047 -0.0003 0.1301 0.0475 1.0041
nlGMM1 -0.0047 0.0605 0.0560 0.9920 -0.0111 0.1327 0.0540 0.9904
nlGMM2 -0.0109 0.0731 0.0565 0.4866 0.9804 0.3538 0.0005 0.1305 0.0469 1.0063
QML2 -0.0001 0.0524 0.0516 0.3324 0.9980 0.4955 0.0004 0.1300 0.0485 1.0017

γ2 sGMM1 -0.0046 0.0844 0.0528 0.9848 -0.0137 0.3229 0.0516 0.9833
sGMM2 -0.0164 0.1016 0.0650 0.2695 0.9865 0.5779 -0.0389 0.3376 0.0503 0.9923
nlGMM1 -0.0069 0.0950 0.0526 0.9868 -0.0294 0.3331 0.0474 0.9795
nlGMM2 -0.0159 0.1140 0.0543 0.3201 0.9892 0.5139 -0.0416 0.3574 0.0452 0.9962
QML2 -0.0010 0.0867 0.0507 0.1893 0.9947 0.6791 -0.0100 0.3180 0.0486 0.9902

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 650.
Note: See the notes for Table 2 in the main paper. The cross-sectional sample size N is increased from 350 to 650.
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Table 27: Simulation results: coefficient estimates, smaller sample size (T = 3)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0036 0.0305 0.0675 0.9944
sGMM2 0.0168 0.0504 0.1393 0.9662
nlGMM1 -0.0029 0.0456 0.0511 0.9959
nlGMM2 0.0040 0.0722 0.0652 0.9753
QML2 0.0046 0.0630 0.0504 0.9433

β1 sGMM1 -0.0057 0.0547 0.0556 0.9974 0.0782 0.4289 0.0446 1.0078
sGMM2 0.0030 0.0724 0.0456 1.0144 0.5691 2.2452 0.0442 0.6129
nlGMM1 0.0002 0.0632 0.0532 0.9989 0.0809 0.7258 0.0495 0.8511
nlGMM2 0.0006 0.0761 0.0437 1.0193 0.2432 35.7086 0.0915 18.2589
QML2 0.0004 0.0678 0.0471 0.9978 0.5423 8.4714 0.0886 1.4245

β2 sGMM1 0.0037 0.0695 0.0540 0.9976 0.1540 0.6636 0.0475 0.9863
sGMM2 0.0016 0.0736 0.0511 0.9984 0.5602 2.1268 0.0430 0.6349
nlGMM1 -0.0009 0.0765 0.0518 0.9993 0.1381 1.2284 0.0702 0.7776
nlGMM2 -0.0009 0.0772 0.0496 1.0061 0.1788 41.0247 0.0961 18.3025
QML2 -0.0001 0.0676 0.0494 1.0008 0.5449 9.1259 0.0867 1.4018

γ1 sGMM1 -0.0129 0.0999 0.0685 0.9917 -0.0104 0.1982 0.0514 1.0076
sGMM2 -0.0515 0.1541 0.1383 0.6659 0.9678 0.2529 -0.0035 0.2226 0.0426 1.0042
nlGMM1 0.0069 0.1436 0.0538 0.9872 -0.0107 0.2021 0.0517 1.0098
nlGMM2 -0.0122 0.2218 0.0625 0.7178 0.9737 0.1811 -0.0045 1.0798 0.0349 13.3417
QML2 -0.0138 0.1947 0.0463 0.6657 0.9427 0.2032 -0.0112 0.5464 0.0380 1.3735

γ2 sGMM1 -0.0111 0.1470 0.0542 0.9941 -0.0166 0.5023 0.0477 0.9952
sGMM2 -0.0737 0.2315 0.1210 0.4993 0.9725 0.3838 -0.2317 1.0334 0.0343 0.7798
nlGMM1 0.0073 0.1906 0.0581 0.9936 -0.0372 0.5544 0.0453 0.9658
nlGMM2 -0.0169 0.3224 0.0556 0.5642 0.9827 0.2853 -0.1007 13.3519 0.0380 17.3573
QML2 -0.0196 0.2839 0.0432 0.4997 0.9546 0.3189 -0.2178 3.9745 0.0382 1.3414

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 3, and N = 350.
Note: See the notes for Table 2 in the main paper. The time horizon T is reduced from 6 to 3.

Table 28: Simulation results: coefficient estimates, larger sample size (T = 10)
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0015 0.0141 0.0582 0.9865
sGMM2 0.0034 0.0180 0.0654 0.9791
nlGMM1 0.0044 0.0176 0.0680 0.9870
nlGMM2 0.0129 0.0257 0.0967 0.9412
QML2 -0.0001 0.0109 0.0509 1.0054

β1 sGMM1 -0.0007 0.0280 0.0526 0.9897 0.0322 0.2393 0.0530 0.9916
sGMM2 0.0013 0.0322 0.0526 0.9922 0.0845 0.3418 0.0491 0.9856
nlGMM1 -0.0023 0.0292 0.0575 0.9869 0.0753 0.2837 0.0511 0.9921
nlGMM2 0.0027 0.0330 0.0526 1.0071 0.2719 0.5456 0.0313 0.9268
QML2 0.0003 0.0230 0.0561 0.9853 0.0079 0.1849 0.0482 1.0003

β2 sGMM1 0.0015 0.0314 0.0561 0.9850 0.0457 0.2803 0.0573 0.9824
sGMM2 0.0010 0.0324 0.0552 0.9878 0.0836 0.3447 0.0505 0.9775
nlGMM1 0.0030 0.0331 0.0534 0.9923 0.1072 0.3516 0.0480 0.9795
nlGMM2 0.0024 0.0333 0.0528 1.0005 0.2712 0.5480 0.0338 0.9222
QML2 -0.0001 0.0230 0.0548 0.9875 0.0059 0.1856 0.0485 0.9959

γ1 sGMM1 -0.0085 0.0553 0.0653 0.9856 -0.0206 0.1776 0.0589 0.9861
sGMM2 -0.0104 0.0631 0.0698 0.3014 0.9821 0.5401 -0.0001 0.1713 0.0525 1.0014
nlGMM1 -0.0167 0.0638 0.0719 0.9907 -0.0183 0.1788 0.0571 0.9860
nlGMM2 -0.0386 0.0832 0.1024 0.4407 0.9549 0.4348 0.0008 0.1717 0.0512 1.0042
QML2 0.0005 0.0475 0.0508 0.1610 0.9997 0.7205 0.0010 0.1712 0.0529 0.9992

γ2 sGMM1 -0.0077 0.0983 0.0469 0.9974 -0.0226 0.4073 0.0470 0.9977
sGMM2 -0.0160 0.1072 0.0568 0.1759 0.9948 0.7120 -0.0377 0.4115 0.0442 1.0008
nlGMM1 -0.0181 0.1080 0.0588 0.9950 -0.0343 0.4196 0.0470 0.9975
nlGMM2 -0.0554 0.1322 0.0895 0.3007 0.9743 0.5997 -0.1085 0.4515 0.0436 0.9973
QML2 0.0001 0.0887 0.0467 0.0895 0.9977 0.8644 -0.0040 0.3911 0.0486 0.9968

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 10, and N = 350.
Note: See the notes for Table 2 in the main paper. The time horizon T is increased from 6 to 10.
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Table 29: Summary statistics: estimation sample

Obs. Mean Std. Dev. Min. Max.

ln(outward FDI)ijt 2,767 4.677 2.372 0 9.697
ln(distance)i 2,767 8.594 0.351 7.560 9.234
ln(distance)i × 2,767 -0.971 12.234 -18.386 29.066
ln(relative capital-labor ratio)it

ln(bilateral GDP)it 2,767 27.085 0.650 26.285 29.394
ln(bilateral GDP)it × 2,767 39.421 31.008 0.095 128.683
| ln(relative physical capital endowment)it|

ln(similarity in country size)it 2,767 -1.358 0.806 -4.483 -0.693
ln(relative physical capital endowment)it 2,767 0.805 1.681 -3.074 4.841
ln(relative human capital endowment)it 2,767 0.045 0.813 -1.526 2.854
ln(relative labor endowment)it 2,767 0.927 1.458 -3.324 5.148
common borderi 2,767 0.048 0.215 0 1
common language, officiali 2,767 0.316 0.465 0 1
common language, otheri 2,767 0.570 0.495 0 1
colonial relationshipi 2,767 0.104 0.305 0 1

Note: See Egger and Pfaffermayr (2004a) and Mayer and Zignago (2011) for a variable descrip-
tion. Subscripts i, j, and t indicate variation across country, sector, and year, respectively. The
columns display the number of observations, the mean and standard deviation, and the minimum
and maximum value.

Table 30: Summary statistics: distinct observations

Obs. Mean Std. Dev. Min. Max.

ln(outward FDI)ijt 2,767 4.677 2.372 0 9.697
ln(distance)i 69 8.611 0.350 7.560 9.234
ln(distance)i × 677 1.664 12.624 -18.386 29.066
ln(relative capital-labor ratio)it

ln(bilateral GDP)it 677 26.911 0.562 26.285 29.394
ln(bilateral GDP)it × 677 48.129 34.696 0.095 128.683
| ln(relative physical capital endowment)it|

ln(similarity in country size)it 677 -1.629 0.993 -4.483 -0.693
ln(relative physical capital endowment)it 677 1.390 1.737 -3.074 4.841
ln(relative human capital endowment)it 677 0.241 0.883 -1.526 2.854
ln(relative labor endowment)it 677 1.206 1.486 -3.324 5.148
common borderi 69 0.029 0.169 0 1
common language, officiali 69 0.275 0.450 0 1
common language, otheri 69 0.536 0.502 0 1
colonial relationshipi 69 0.058 0.235 0 1

Note: See Egger and Pfaffermayr (2004a) and Mayer and Zignago (2011) for a variable descrip-
tion. Subscripts i, j, and t indicate variation across country, sector, and year, respectively.
The columns show the number of distinct observations, the corresponding mean and standard
deviation, and the minimum and maximum value.
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Table 31: Estimation results: additional estimates
ln(outward FDI)it nlGMM1b nlGMM2b M-sGMM2 M-QML1 M-QML2

ln(outward FDI)i,t−1 0.913 0.945 0.916 0.927 0.802
(0.082)*** (0.069)*** (0.066)*** (0.056)*** (0.054)***

ln(distance)i × -0.132 0.060 -0.099 0.101 -0.842
ln(rel. capital-labor ratio)it (0.713) (0.584) (0.141) (0.519) (0.520)
ln(bilateral GDP)it 0.680 0.596 1.237 1.639 2.305

(0.614) (0.695) (0.719)* (0.588)*** (0.605)***
ln(bilateral GDP)it × -0.006 -0.016 -0.007 -0.008 -0.009
| ln(rel. phys. capital endowment)it| (0.012) (0.013) (0.007) (0.006) (0.006)
ln(similarity in country size)it -0.032 -0.054 0.436 0.839 0.840

(0.389) (0.502) (0.233)* (0.466)* (0.420)**
ln(rel. phys. capital endowment)it 1.268 -0.307 1.385 -0.324 7.926

(6.064) (5.054) (1.384) (4.630) (4.594)*
ln(rel. human capital endowment)it 0.013 0.084 -0.040 0.060 0.081

(0.146) (0.152) (0.134) (0.108) (0.090)
ln(rel. labor endowment)it -1.114 0.581 -0.741 1.854 -6.275

(6.219) (5.150) (1.228) (4.276) (4.282)
ln(distance)i 0.366 -0.722 -0.055 -0.038 -0.082

(0.887) (1.309) (0.054) (0.051) (0.100)
common borderi 0.134 0.162 0.443

(0.169) (0.175) (0.192)**
common language, officiali 0.053 0.006 0.110

(0.061) (0.044) (0.067)
common language, otheri -0.036 -0.027 -0.043

(0.039) (0.036) (0.068)
colonial relationshipi 0.065 0.084 0.174

(0.057) (0.055) (0.066)***

observations 2,198 2,198 2,198 1,614 1,664
units 337 337 337 173 227
1st stage
instruments 60 58 58
constant yes yes yes yes no
year dummies 1991–1999 1991–1999 1991–1999 1991–1999 1991–1999

χ2
9=11.16 χ2

9=9.11 χ2
9=13.50 χ2

9=29.61 χ2
9=25.42

[0.265] [0.427] [0.141] [0.001]*** [0.003]***

Mundlak χ2
7=10.56

[0.159]
Arellano-Bond z=-0.014 z=-0.031 z=-0.016

[0.989] [0.975] [0.987]

Hansen χ2
41=44.43 χ2

40=42.62 χ2
40=44.27

[0.239] [0.359] [0.296]

difference-in-Hansen χ2
1=1.81
[0.178]

2nd stage
instruments 3 22 22
constant yes yes yes

Mundlak χ2
7=6.50 χ2

7=11.21
[0.482] [0.130]

Hansen χ2
1=0.48
[0.487]

short-run marg. eff. of ln(distance)i
evaluated at the 5th percentile 0.636 -0.841 0.140 -0.237 1.574

(1.836) (1.717) (0.274) (1.031) (1.051)
evaluated at the mean 0.383 -0.729 -0.043 -0.050 0.021

(0.913) (1.309) (0.054) (0.088) (0.131)
evaluated at the 95th percentile 0.010 -0.559 -0.324 0.235 -2.356

(1.907) (2.078) (0.392) (1.393) (1.382)*
long-run marg. eff. of ln(distance)i
evaluated at the 5th percentile 7.210 -15.412 1.676 -3.232 7.933

(17.669) (43.339) (2.868) (14.718) (5.386)
evaluated at the mean 4.406 -13.369 -0.519 -0.684 0.105

(9.499) (33.346) (0.708) (1.397) (0.662)
evaluated at the 95th percentile 0.116 -10.242 -3.876 3.215 -11.874

(22.013) (39.864) (3.811) (19.592) (7.094)*

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: See Egger and Pfaffermayr (2004a) and Mayer and Zignago (2011) for a data description. We abbreviate
the estimators as follows: “sGMM” and “nlGMM” refer to GMM estimators that are described in Table 1.
“QML2” refers to the Hsiao et al. (2002) QML estimator in the first stage and “QML1” to the Bhargava and
Sargan (1983) QML estimator. The prefix “M-” denotes a Mundlak (1978) projection (including time dummies) as
discussed in Remark 3 or 5. The trailing numbers 1 or 2 denote one-stage and two-stage estimators, respectively.

The exogenous variables according to Assumption 3 are the similarity in country size(b) and the relative human

capital endowment(b). Standard errors robust to serial correlation and heteroskedasticity are in parentheses. The
test statistics are a Wald test for the joint insignificance of the time dummies, a Wald test for joint insignificance
of the within-group averages of the time-varying regressors (excluding time dummies), the Arellano and Bond
(1991) test for no second-order serial correlation in the first-differenced residuals, as well as the Hansen and
difference-in-Hansen tests discussed in Section 5. The respective p-values are in brackets. The marginal effects of
ln(distance)i are evaluated at the 5th percentile (-1.966), the mean (-0.122), and the 95th percentile (2.701) of
ln(rel. capital-labor ratio)it for the full sample of 2,767 observations. The long-run marginal effects in dynamic
models are obtained as the short-run marginal effects divided by one minus the coefficient of the lagged dependent
variable.
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