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Abstract

When testing for unrestricted serial correlation in linear panel data models, the number of

moment restrictions under the null hypothesis of no such correlation increases quadratically in the

number of time periods T . Portmanteau tests designed for fixed T can quickly lose power even for

time horizons which are typically still considered as small. To circumvent this problem, we propose

refinements motivated by strategies to reduce the number of instruments in the estimation of

dynamic panel data models. Furthermore, we propose a new test based on covariances between first

differences and encompassing longer differences. Our test yields substantial power improvements

against moving-average and autoregressive alternatives. It retains high power under random-walk

alternatives and high variances of the group-specific error component. Moreover, we demonstrate

that serial-correlation tests based on regression residuals can suffer from severe power losses when

the initial estimator is inconsistent under the alternative. Finally, we re-analyze a widely used data

set for the estimation of dynamic employment equations. Contrary to previous evidence, but in

line with our power comparisons, our proposed test uncovers statistical evidence for the presence

of serial correlation. Taken at face value, this in turn implies that the original regression results

suffer from estimator inconsistency.
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1 Introduction

Serial correlation in the idiosyncratic error component is usually undesirable when estimating panel

data models with an error components structure. The adverse consequences reach from inefficient

to inconsistent estimation of regression coefficients, as well as inconsistent standard error estimates.

When the regression model is dynamically incomplete as a consequence of omitting relevant lagged

predictors, correcting standard errors for serial correlation is generally insufficient for conducting valid

statistical inference. Especially in dynamic panel models, identification strategies based on instrumen-

tal variables are designed for dynamically complete models, in which the within-group correlation of

the error term is entirely due to the group-specific component. Similarly, likelihood-based estimators

rely on the correct specification of the error covariance structure. Tests for serial correlation are there-

fore an essential part of the standard specification testing toolkit. In this paper, we discuss recent

advances for serial-correlation testing and propose refined tests with better power properties under a

wide range of alternatives.

For models with strictly exogenous regressors – ruling out dynamic models with a lagged dependent

variable – a variety of serial correlation tests has been proposed, starting with the generalized Durbin-

Watson statistic of Bhargava et al. (1982) and the Lagrange multiplier statistic of Baltagi and Li (1995).

A shortcoming of both tests is that they rely on the assumption of normally distributed disturbances.

Wooldridge (2002) suggested a computationally simple test – operationalized by Drukker (2003) –

based on first-differenced residuals. Born and Breitung (2016) summarize the properties of these tests

and suggest some modifications.

The previous tests are designed for specific data-generating processes and can have poor power

against other alternatives. Inoue and Solon (2006) proposed a portmanteau test against arbitrary

higher-order correlation for a small number of time periods T , which was refined by Jochmans (2020a)

to overcome the reliance on a regularization parameter. Since the number of moment restrictions under

the null hypothesis grows quadratically in T , the cross-sectional sample size N must grow even faster

for a reliable asymptotic approximation of the test statistic’s distribution. To avoid a loss of power

with relatively large T , the test statistic can be limited to lower-order autocovariances. Alternatively,

tests can be constructed against autocorrelation of a specific order, as suggested by Born and Breitung

(2016).

It is a major drawback of these approaches that they require the explanatory variables to be strictly

exogenous.1 Early tests for specific covariance restrictions in models with a lagged dependent variable

1Jochmans (2020a) considers an adjustment of his modified Inoue and Solon (2006) test for models with predetermined
regressors.
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include the Bhargava and Sargan (1983) likelihood ratio test and the Wald or minimum chi-square tests

proposed by Bhargava (1987) and Arellano (1990), which treat the elements of the error covariance

matrix as structural parameters. For more flexible models with any number of predetermined or

endogenous regressors, the Arellano and Bond (1991) test was the empirical researcher’s first choice for

a long time. This is a test against second-order serial correlation of the first-differenced disturbances.

It is straightforward to generalize the test for higher orders (Arellano, 2003, p. 121–123). With the

aim to increase power, Yamagata (2008) proposed to test jointly against correlation of second and

higher order. However, because both tests are entirely based on first differences, they lack power

against random-walk alternatives. More recently, Jochmans (2020b) developed a portmanteau test

against arbitrary serial correlation, which remains valid under heteroskedasticity of any form, retains

power under strong autoregressive alternatives, and is applicable with as few as 3 time periods. The

Arellano and Bond (1991) and Yamagata (2008) tests, which can be constructed from a subset of the

portmanteau moment restrictions, require at least 4 consecutive observations.

However, if N is not sufficiently large relative to T , this portmanteau test can suffer from a similar

loss of power as the Inoue and Solon (2006) test due to the large number of moment restrictions

under the null hypothesis. Importantly, this can bite already at moderately small T , which empirical

researchers may not consider problematic. Even when T is sufficiently small, the test’s power is

sensitive to a large variance of the group-specific error component.

To address the problem of moment proliferation with increasing T , we can borrow ideas from

the literature on the estimation of dynamic panel models with too many instruments, especially

curtailing and collapsing (Roodman, 2009; Kiviet, 2020). In many applications, the marginal signal

provided by moment restrictions that are sensitive to higher-order serial correlation is of diminishing

value. Limiting the focus on the most informative moment restrictions – i.e., curtailing the order

of correlation that can be detected under the alternative hypothesis – can thus improve the finite-

sample performance of the test. Similarly, imposing some homogeneity of the data-generating process

over time – i.e., collapsing/averaging the moment restrictions over time periods – hardly limits the

spectrum of alternatives that can be detected by the test.

Beyond those refinements, we propose a particular linear combination of the moment restrictions

to test for significant covariances between first differences and encompassing longer differences. Our

test addresses two main shortcomings of the existing tests: Unlike tests based entirely on first differ-

encing, our moment restrictions remain informative under a random-walk alternative; in contrast to

the portmanteau test, our test is invariant to high variances of the group-specific error component. We

use asymptotic power calculations and Monte Carlo simulations to showcase the power improvements
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of our test against various alternatives.

Since serial correlation tests are typically performed on regression residuals, the estimation un-

certainty affects the distribution of the test statistic – unless restrictive exogeneity assumptions are

imposed on the regressors. We demonstrate analytically and with simulations that the considered tests

can suffer from substantial power losses when the initial estimator is inconsistent under the alternative

hypothesis – even if the estimation uncertainty is correctly accounted for. This is generally the case in

dynamic panel models. In extreme cases, the signal from serially correlated errors can be entirely offset

by the estimation error. For testing purposes, where possible, we therefore recommend to choose an

estimator that remains consistent under the alternative, disregarding a potential efficiency loss under

the null hypothesis.

As an empirical illustration, we apply the existing and new serial-correlation tests to the data

set used by Arellano and Bond (1991) in their seminal paper. They did not find evidence of serial

correlation after estimating dynamic employment equations in a sample of U.K. companies, affirming

the correct specification of their regression model. We replicate and re-assess their results with several

of the existing and new tests. While the existing tests do not reject the null hypothesis, our new

test based on long and first differences strongly rejects it in favor of serially correlated errors. These

findings can be explained with the power comparisons in this paper, and they imply that the original

estimations are inconsistent.

2 Testing for serial correlation

2.1 Moment restrictions

We consider the familiar error components model

yit = x′
itβ + uit, uit = αi + εit, (1)

i = 1, 2, . . . , N , and t = 1, 2, . . . , T . xit is a K × 1 vector of regressors. The error term uit consists of

the group-specific component αi and the idiosyncratic component εit. It is assumed throughout that

both error components are independently distributed with mean zero. Following Jochmans (2020b),

suppose that an asymptotically linear estimator β̂ is available for the coefficient vector β, such that

√
N(β̂ − β) =

1√
N

N∑
i=1

ωi + op(1), (2)

4



where ωi is a mean zero random variable with finite variance under the null hypothesis of no serial

correlation in εit. The moment restrictions jointly considered under the null hypothesis are

E[εisεit] = 0 (3)

for all s ̸= t. In total, there are T (T −1)/2 distinct covariances. However, since we cannot consistently

estimate the group-specific component αi under fixed-T asymptotics, we cannot back out consistent

estimates for the idiosyncratic error component εit either. The test thus needs to be based on estimates

of the combined errors uit.

As pointed out by Jochmans (2020b), instead of the moment restrictions (3), we can work with

differences of covariances:

E[εisεit]− E[εisεir] = E[uis(uit − uir)] = 0. (4)

As long as we assume that there exists no c ̸= 0 such that E[εisεit] = c for all s ̸= t, testing restrictions

(3) is equivalent to testing restrictions (4). Notice that T (T − 1)/2 − 1 of the latter restrictions are

linearly independent. A convenient way of writing the nonredundant moment restrictions is

E[ui,t−s∆uit] = 0, 3 ≤ t ≤ T, 2 ≤ s ≤ t− 1, (5)

E[ui,t+1∆uit] = 0, 2 ≤ t ≤ T − 1, (6)

where ∆uit = uit − ui,t−1. In the following, we label the moments (5) backward looking and the

moments (6) forward looking.

The composite null hypothesis can then be written as

E[ζi] = 0, (7)

where ζi = H′
i∆ui, ∆ui = (∆ui2,∆ui3, . . . ,∆uiT )

′, and Hi = (Hi−,Hi+), with

Hi− =



0 0 0 · · · 0 · · · 0

ui1 0 0 · · · 0 · · · 0

0 ui1 ui2 0 · · · 0

...
. . .

0 0 0 ui1 · · · ui,T−2


and Hi+ =



ui3 0 · · · 0

0 ui4 0

...
. . .

0 0 uiT

0 0 · · · 0


.
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2.2 Transformations

Any linear transformation of the moment conditions (7) yields a valid subset of restrictions under the

null hypothesis of no serial correlation in the idiosyncratic error component:

E[Rζi] = 0, (8)

where R is a deterministic transformation matrix of full row rank r. If R is nonsingular, tests of

the moment restrictions (7) and (8) are equivalent. Some relevant transformations take the block-

triangular form

R =

R− 0

R± R+

 ,

conformable with the following partitioning of the moment functions:

ζi =

Ḣi− 0

0 Ḧi+


′∆u̇i

∆üi

 ,

where Ḣi− equals Hi− without the first row, and Ḧi+ is the diagonal matrix obtained by removing

the last row from Hi+. Correspondingly, ∆u̇i has the initial observation ∆ui2 excluded, and ∆üi is a

vector without the last observation ∆uiT .

As an example of an equivalent set of moment restrictions, we can replace any of the moment

functions ui,t+1∆uit in Ḧ′
i+∆üi by the otherwise redundant ui,t+s∆uit, for some s ≥ 2, because

(ui,t+s−ui,t+1)∆uit can be written as a linear combination of the moment functions in Ḣ′
i−∆u̇i. More

generally, we can replace Ḧ′
i+∆üi by any valid linear combination of the initial moment functions,

Ȟ′
i+∆üi = R±Ḣ

′
i−∆u̇i +R+Ḧ

′
i+∆üi, (9)

provided thatR+ is of full rank. For example, we can letR+ = IT−2 and find a correspondingR± such

that Ȟi+ = uiT IT−2. Another relevant case would be Ȟi+ = K′
+Ḧi+, where K+ is a lower-triangular

transformation matrix of full rank. In particular,

K+ =



1
2 0 · · · 0

1
3

2
3 0

...
...

. . .

1
T−1

2
T−1 · · · T−2

T−1


,
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such that K+∆üi yields a vector of “backward-orthogonal deviations” uit− 1
2

∑t
s=1 uis, 2 ≤ t ≤ T −1.

It turns out that this can be achieved by setting R+ = K+ with an appropriate choice of R±.
2

For the backward-looking moment functions, it follows immediately from results in Arellano and

Bover (1995) that there exists a nonsingular transformation matrix R−, such that R−Ḣi−∆u̇i =

Ḣi−K−∆u̇i, where K− is an upper-triangular transformation matrix of full rank. To complement the

above example, we can choose

K− =



−T−2
T−1 · · · − 2

T−1 − 1
T−1

. . .
...

...

0 −2
3 −1

3

0 · · · 0 −1
2


,

such that K−∆u̇i is a vector of “forward-orthogonal deviations” uit − 1
T−1

∑T
s=t uis, 2 ≤ t ≤ T − 1.

Put together, we can recast the whole set of moment functions equivalently in terms of deviations

from forward and backward means:

Rζi =

Ḣi− 0

0 Ḧi+


K− 0

0 K+


∆u̇i

∆üi

 . (10)

This result applies to all valid transformations K− and K+ that satisfy the above requirements.

While, in general, the test statistic is invariant to such a transformation, using deviations from

forward and backward means can be beneficial if there are gaps in the panel data set. Such gaps would

only lead to the loss of a single observation per gap because the missing observation can simply be

ignored in the calculation of the forward and backward means. In contrast, with first differences each

gap leads to the loss of two consecutive observations.

In the following, we restrict our attention to balanced panel data sets without gaps. Our main focus

will be on transformation matrices R that reduce the dimension of the moment vector by selecting or

linearly combining specific moments. Such dimensionality reduction approaches are no longer invariant

to the initial choice of nonredundant moments.

2.3 Test statistic

Since the regression errors uit are unobserved, a feasible test needs to be based on residuals ûit =

yit−x′
itβ̂. We can expand the estimated moment functions ζ̂i = Ĥ′

i∆ûi to express them as a function

2For details, see Appendix A.
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of ζi = (ζ1i, ζ2i, . . . , ζri)
′ and the estimation error β̂ − β:

ζ̂i = ζi +D1i

(
β̂ − β

)
+

1

2

(
Ir ⊗

(
β̂ − β

)′)
D2i

(
β̂ − β

)
,

where

D1i =
∂ζi
∂β′ =



∂ζ1i
∂β′

∂ζ2i
∂β′

...

∂ζri
∂β′


and D2i =



∂2ζ1i
∂β∂β′

∂2ζ2i
∂β∂β′

...

∂2ζri
∂β∂β′


.

It then follows from equation (2) and Jochmans (2020b, Appendix A) that

N∑
i=1

ζ̂i =

N∑
i=1

ζi +

(
Γ1 +

1

2

(
Ir ⊗

(
β̂ − β

)′)
Γ2

) N∑
i=1

ωi + op(
√
N), (11)

where Γj = E[Dji]. Since under the null hypothesis (Ir ⊗ (β̂ − β)′)Γ2
∑N

i=1ωi = op(
√
N) itself, we

can obtain the asymptotic distribution from

1√
N

N∑
i=1

ζ̂i =
1√
N

N∑
i=1

(ζi + Γ1ωi) + op(1).

However, the extra term involving Γ2 will be useful for the (finite-sample) power analysis if the

estimator β̂ becomes inconsistent under the alternative hypothesis, which we explore in more detail

in Section 4. As pointed out by Jochmans (2020b), Γ1 generally differs from the null matrix unless all

regressors xit are strictly exogenous with respect to εit and their first differences ∆xit are uncorrelated

with αi. The latter is satisfied in a static random-effects model but does not automatically hold under

a fixed-effects assumption. In dynamic models, the lagged dependent variable violates the strict-

exogeneity assumption by construction.

With estimates of the Jacobian Γ̂1 – see Jochmans (2020b) – and the influence function ω̂i, the

test statistic is computed as3

ŝR,N =

(
1√
N

N∑
i=1

Rζ̂i

)′(
1

N

N∑
i=1

R(ζ̂i + Γ̂1ω̂i)(ζ̂i + Γ̂1ω̂i)
′R′

)−(
1√
N

N∑
i=1

Rζ̂i

)
, (12)

with a suitable choice of the transformation matrix R; for the portmanteau test, R = Ir. Denote the

noncentral χ2-distribution with r degrees of freedom and noncentrality parameter τ by χ2(r, τ). The

following corollary immediately follows from Theorem 2 of Jochmans (2020b):

3(·)− denotes a generalized inverse in case of rank deficiency.
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Corollary 1: Let E[α4
i ] < ∞, E[ε4it] < ∞, and E[||xit||4] < ∞, equation (2) hold, N−1

∑N
i=1 ||ω̂i −

ωi||2 = op(1), and Ṽ = E[(ζi +Γ1ωi)(ζi +Γ1ωi)
′] be of maximal rank r. Then, as N → ∞ and with

T fixed,

(i) ŝR,N
d→ χ2(r, 0) under the null hypothesis E[ζi] = 0;

(ii) ŝR,N
d→ χ2(r, δ̃

′
R′(RṼR′)−1Rδ̃) with δ̃ = δ + Γ1w(δ) under the sequence of local alternative

hypotheses E[ζi] = δ/
√
N , such that E[ωi] = w(δ)/

√
N , where w(0) = 0.4

To demonstrate the problem of moment proliferation, let us consider the case where β is known.5

Then, the test statistic simplifies to

sR,N =

(
1√
N

N∑
i=1

Rζi

)′(
1

N

N∑
i=1

Rζiζ
′
iR

′

)−(
1√
N

N∑
i=1

Rζi

)
, (13)

and we can establish the following finite-sample result:6

Proposition 1: Let rk
(∑N

i=1Rζiζ
′
iR

′
)
= min(N, r) with probability 1. Then, sR,N = N for r ≥ N .

Thus, when the number of moment restrictions r reaches or exceeds the cross-sectional sample size

N , the test statistic becomes degenerate and the null hypothesis is never rejected. In practice, this

curse of dimensionality can bite quickly. For example, empirical researchers might still consider T to

be small in data sets with T = 15 and N = 100, but Proposition 1 already applies for the portmanteau

test because r = 104. Moreover, power losses occur well before reaching the degenerate case.

2.4 Dimensionality reduction

The (T −1)×(T −1)(T −2)/2 matrix Hi− has the same general structure as the matrix of instruments

in the Arellano and Bond (1991) GMM estimator. Because a large number of instruments can lead to

overfitting problems, instrument reduction strategies are commonly applied. The leading approaches

include “curtailing” and “collapsing” (Roodman, 2009; Kiviet, 2020). Corresponding strategies can be

applied to reduce the dimensionality of the moment restrictions to be tested. They can be implemented

as linear combinations of the full set of moment restrictions.7

Curtailing refers to a selection of columns of matrix Hi− corresponding to the backward-looking

moment restrictions

E[ui,t−s∆uit] = 0, 3 ≤ t ≤ T, 2 ≤ s ≤ q + 1, (14)

4w(δ) = 0 for all δ if the estimator β̂ remains consistent under the alternative.
5For example, with β = 0, this amounts to testing for serial correlation in the idiosyncratic component of an observed

variable yit without the need of estimating residuals.
6The proof of Proposition 1 is relegated to Appendix B.
7Appendix C provides a characterization of matrix R for the cases discussed below.
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for some q ≥ 1. Curtailing thus reduces the number of these moments from (T − 1)(T − 2)/2 to

q(2T − q − 3)/2. The forward-looking moments (6) remain unchanged.

Collapsing instead leads to linear combinations of the moment restrictions of the form

E

[
T∑

t=1+s

ui,t−s∆uit

]
= 0, 2 ≤ s ≤ T − 1, (15)

E

[
T−1∑
t=2

ui,t+1∆uit

]
= 0, (16)

which reduces their number to T−2 backward-looking moments and a single forward-looking moment.

Both curtailing and collapsing limit the growth of the moment count to a linear instead of a quadratic

rate in T . If the two approaches are combined, the total number of moment restrictions becomes q+1,

independent of T .

Further below, we will also consider a variant of the test which combines all columns of Hi+ and

Hi− into a single moment restriction, which we shall call “full collapsing”:

E

[
T−1∑
t=2

ui,t+1∆uit −
T−1∑
s=2

T∑
t=1+s

ui,t−s∆uit

]
= 0. (17)

2.5 First differencing

Because the levels of uit are a function of the group-specific error component αi, a high variance of

αi can adversely affect the performance of the test by overshadowing the signal coming from εit. To

circumvent this issue, a test can be constructed based entirely on first-differenced errors:

E[∆ui,t−s∆uit] = 0, 4 ≤ t ≤ T, 2 ≤ s ≤ t− 2. (18)

By combining this idea with the collapsing approach, we obtain the test proposed by Yamagata

(2008), which is a joint test against serial correlation at order 2 or higher in the first-differenced errors:

E

[
T∑

t=2+s

∆ui,t−s∆uit

]
= 0, 2 ≤ s ≤ T − 2. (19)

By selecting the single moment restriction for s = q + 1, we can test against serial correlation in the

first-differenced errors of order q+1, which would be indicative for q-th order serial correlation in the

level errors. This resembles the test proposed by Arellano and Bond (1991).8

While the general portmanteau test is applicable with as few as T = 3 observations per group, a

8Arellano and Bond (1991) compute an asymptotically standard-normally distributed version of this test.
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test based on first differences requires T ≥ 4. To be different from the Arellano-Bond test, Yamagata’s

test requires T ≥ 5.

2.6 S-differencing

The tests based on first differences entirely ignore the forward-looking moment restrictions, which

is inefficient and can lead to substantial power losses. In particular, when the idiosyncratic error

component follows a random walk – i.e., εit = εi,t−1 + νit with independently distributed innovations

νit – the test has no power because ∆uit remains serially uncorrelated. To overcome this shortcoming

while retaining the benefit of invariance to αi, we propose an alternative differencing approach by

linearly combining columns from matrix Hi− with those from Hi+. This yields covariance restrictions

between longer differences ∆s∗,suit = ui,t+s∗ − ui,t−s, s
∗ ≥ 1 and s ≥ 2, and first differences ∆0,1uit =

∆uit = uit − ui,t−1:

E[∆1,suit∆uit] = 0, 4 ≤ t ≤ T − 1, 2 ≤ s ≤ t− 2. (20)

It suffices to focus on s∗ = 1 because additional moment restrictions for s∗ > 1 become redundant.

Importantly, the long differences are encompassing the first differences. We refer to this transforma-

tion as S-differencing, which may be derived from “seasonal differencing”9 or “sandwich differencing”

(because of the encompassing structure). These moments remain informative under the random-walk

alternative because Cov(εi,t+1,∆εit) = V ar(νit). As before, to address the issue of too many moments,

we can combine the S-differencing strategy with curtailing and collapsing.

3 Power comparisons

To simplify the power calculations, let β = 0 to avoid the complication of estimating β in a first stage.

The test is then directly computed with the observed yit = uit. Analogously to Jochmans (2020b), we

consider either a first-order moving-average (MA(1)) alternative,

εit = νit + θνi,t−1, (21)

or a first-order autoregressive (AR(1)) alternative,

εit = ρεi,t−1 + νit. (22)

νit is independently distributed with mean zero and variance σ2ν,t, and the variance of αi is σ
2
α. Initially,

we focus on the stationary case, where σ2ν,t = σ2ν and the initial observations εi0 under the AR(1)

9In Stata, long differences are generated with the seasonal-differencing operator S.
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Table 1: Noncentrality parameters against stationary alternatives

dimensionality reduction noncentrality parameter degrees of freedom

T = 3 – τ = κ2

3

(
2
η+1

)
r = 2

full collapsing τfc =
κ2

3

(
2
η+1

)
rfc = 1

T = 4 – τ = κ2

6

(
4(3+ψ2)η+9+6ψ+5ψ2

2η+1

)
r = 5

curtailing (q = 1) τ1 = κ2
(
1 + 1

4η+5

)
r1 = 4

collapsing τc =
κ2

2

(
2(8−4ψ+ψ2)η+16+8ψ+7ψ2

η(η+11)+6

)
rc = 3

full collapsing τfc =
κ2

2

(
(4+ψ)2

5η+6

)
rfc = 1

first differences τ∆ = κ2

4
(1− ψ)2 r∆ = 1

S-differences τ∆1,2 = κ2 r∆1,2 = 1

Note: η =
σ2
α
σ2
ν
; κ = θ and ψ = 0 against an MA(1) alternative, κ = ρ

1+ρ
and ψ = ρ against an

AR(1) alternative.

alternative are independently distributed with mean zero and variance σ2ν/(1− ρ2). Under the MA(1)

alternative, the expected values of the moment restrictions are

E[ui,t−s∆uit] =


−θσ2ν , 3 ≤ t ≤ T, s = 2,

0, 3 ≤ t ≤ T, 2 < s ≤ t− 1,

E[ui,t+1∆uit] = θσ2ν , 2 ≤ t ≤ T − 1.

Under the AR(1) alternative, they are

E[ui,t−s∆uit] = − ρs−1

1 + ρ
σ2ν , 3 ≤ t ≤ T, 2 ≤ s ≤ t− 1,

E[ui,t+1∆uit] =
ρ

1 + ρ
σ2ν , 2 ≤ t ≤ T − 1.

The test statistic is given in equation (13). As a special case of Corollary 1, sR,N
d→ χ2(r, 0) under

the null hypothesis, and sR,N
d→ χ2(r, δ′R′(RVR′)−1Rδ) under the sequence of local alternatives

E[ζi] = δ/
√
N , where V = E[ζiζ

′
i] is the variance-covariance matrix of the full set of moment

restrictions under the null hypothesis; see also Theorem 1 in Jochmans (2020b). For known variance-

covariance matrix V, we can compute the theoretical power as the tail probability from the noncentral

χ2-distribution.10

Table 1 lists the resulting noncentrality parameters for three- and four-wave panels against sta-

tionary MA(1) or AR(1) alternatives. In the following, we will use these analytical expressions to add

some insights to the power comparisons carried out by Jochmans (2020b).11 Besides considering the

10See Appendix D for a general characterization of matrix V.
11Notice that for T = 4 the noncentrality parameter τ for the portmanteau test without moment reduction is different

from the one presented by Jochmans (2020b). Notwithstanding this discrepancy, for the special case σ2
α = 0 primarily

considered in the power comparison exercise by Jochmans (2020b), his expression yields the correct value. Hence, his
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dimensionality reduction techniques, we also have a closer look at the performance under different

variance ratios η = σ2α/σ
2
ν .

3.1 Three-wave panel

While our main focus is on moderately small T , it is instructive to consider the case of very small

T first. When T = 3, there are two moments with the following expectation under the stationary

alternatives:

E[ζi] = E


ui1∆ui3
ui3∆ui2


 = κσ2ν

−1

1

 ,

with κ = θ for the moving-average case, and κ = ρ/(1 + ρ) for the autoregressive case. Other alter-

natives, such as second-order moving-average or autoregressive processes, lead to the same expression

by amending κ accordingly.

Clearly, not every linear combination yields a useful test statistic. Simply adding up both restric-

tions with R = (1, 1) yields a test with no power against either alternative, because E[Rζi] = 0 for

all values of κ. In contrast, the noncentrality parameter is maximized by R = (−1, 1) (up to sign and

scale), which corresponds to our fully collapsed test. It turns out that the resulting noncentrality pa-

rameter is identical to the one without dimensionality reduction. However, for the same noncentrality

parameter, a test with 1 degree of freedom is uniformly more powerful than one with 2 degrees of

freedom.

The theoretical power improvements from linearly combining the two moment restrictions are

demonstrated in Figure 1 for η = 0 (no group-specific effects) and η = 4. Local power is computed

for a cross-sectional sample size of N = 100. The solid line depicts the test with 2 degrees of freedom,

while the dashed line shows the power of the fully collapsed test. The other discussed options for

dimensionality reduction are not applicable for T = 3. The power profiles against a moving-average

alternative are symmetric, while they are asymmetric against the autoregressive alternative. In the

latter case, the power improvements from full collapsing are more pronounced for positive values of

ρ. A larger variance ratio η is always power reducing, which is obvious from the effect of η on the

noncentrality parameter.

It needs to be noted that the fully collapsed test is generally no longer uniformly more powerful

under deviations from stationarity. Exemplarily, we illustrate this for scenarios with increasing vari-

ance over time, σ2ν,t = t/2, or decreasing variance over time, σ2ν,t = 2− t/2. We restrict our attention

to σ2α = 4, but note that a smaller variance of the group-specific effects tends to benefit the fully

qualitative conclusions for this case continue to hold. We have numerically verified that our analytical expressions for
the variance-covariance matrix and the noncentrality parameters are correct for any value of σ2

α.
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(c) MA(1) alternative, η = 4
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(d) AR(1) alternative, η = 4

Figure 1: Theoretical power calculations for T = 3 against stationary alternatives

collapsed test more. The initial observations under the AR(1) alternative are set to εi0 = 0. The

implications are shown in Figure 2. The test with two degrees of freedom has a particular advantage

against highly persistent autoregressive alternatives. However, it is difficult to generalize these results

because they depend on the specific assumptions about the error variances.

3.2 Four-wave panel

When T = 4, there are five moments with the following expectation under the stationary MA(1) or

AR(1) alternatives:

E[ζi] = E





ui1∆ui3

ui1∆ui4

ui2∆ui4

ui3∆ui2

ui4∆ui3




= κσ2ν



−1

−ψ

−1

1

1


,

with κ = θ and ψ = 0 for the moving-average case, and κ = ρ/(1+ρ) and ψ = ρ for the autoregressive

case.

It is interesting to note that unlike the T = 3 case, the Jochmans (2020b) test with all moment
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(a) MA(1) alternative, increasing variance
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(c) MA(1) alternative, decreasing variance
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(d) AR(1) alternative, decreasing variance

Figure 2: Theoretical power calculations for T = 3 under heteroskedasticity

restrictions now retains power even as η → ∞, since limη→∞ τ = κ2(3+ψ2)/3 > 0.12 Intuitively, while

some power is lost, it does not vanish completely because moment restrictions in first differences or S-

differences, free of αi, can be formed from suitable linear combinations of the moments. For example,

combining the second and third moment results in the Arellano and Bond (1991) test. The latter is

nevertheless dominated by the Jochmans test even after taking the degrees-of-freedom reduction into

account.

For the collapsed test, limη→∞ τc = 0. The reason for this is that the collapsed moment restrictions

can no longer be combined into differenced moment restrictions. The latter is still possible for the

curtailed test, which just discards the second moment restriction. A linear combination of the first

and last moment yields E[(ui4−ui1)∆ui3], which again is free of the group-specific effects. While this

S-differencing test is not the most powerful one when η = 0, the balance already shifts in its favor

for relatively small variance ratios. Importantly, this test does not lose power against autoregressive

alternatives when ρ approaches 1, unlike tests based on first differences. The fully collapsed test, which

was strictly preferred for T = 3 against stationary alternatives, still dominates the other variants for

12This result stands in contrast to the noncentrality parameter reported by Jochmans (2020b), which incorrectly
suggests that power goes to zero with increasing variance of the group-specific effects.
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(c) MA(1) alternative, η = 4
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(d) AR(1) alternative, η = 4

Figure 3: Theoretical power calculations for T = 4 against stationary alternatives

η = 0 but quickly loses power with increasing variance ratio.

Figure 3 summarizes these observations graphically. The solid and dashed lines correspond again

to the Jochmans test and the fully collapsed test, respectively. The longdashed-dotted line represents

the curtailed test, the shortdashed-dotted line the collapsed test, and the very-long-dashed line the

Arellano-Bond test. Finally, the line alternating between very long dashes and short short dashes

refers to the sandwich-differenced test.

The effects of heteroskedasticity are not as pronounced anymore as in the three-wave case. We

consider again scenarios with increasing variance over time, σ2ν,t = t/2 − 1/4, or decreasing variance

over time, σ2ν,t = 9/4 − t/2. As with T = 3, σ2α = 4 and εi0 = 0. The power profiles are shown in

Figure 4. Under an increasing variance, it is particularly the fully collapsed test which suffers the

most. The other tests are only mildly affected. Under a decreasing variance, some of the tests no

longer have monotonically increasing power functions for positive serial correlation under the AR(1)

alternative. Again, it is difficult to draw general conclusions.
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(c) MA(1) alternative, decreasing variance

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

ρ

(d) AR(1) alternative, decreasing variance

Figure 4: Theoretical power calculations for T = 4 under heteroskedasticity

3.3 Moderately small T

For larger T , analytical expressions of the noncentrality parameters become increasingly complex

without additional insights. We thus focus on numerically obtained power profiles. Figure 5 shows

the theoretical power for the same moment reduction techniques as before for T = 10. Additionally,

the Yamagata (2008) collapsed first-difference test is included here, presented with alternating triple

long and triple short dashes. The graphs generally tell a similar story as for T = 4. The differences

between the various test versions are now less pronounced because more time periods generally improve

the detectability of serial correlation. Like the Arellano and Bond (1991) test, the power of the

Yamagata (2008) test eventually drops towards zero for alternatives close to a random walk, but it

shows satisfactory power for most other parameter values. An important observation can be made

about the Jochmans (2020b) test without moment reduction (solid line). With increasing T , it loses

power relative to most of the tests that are more conservative in their use of the degrees of freedom.

The results are again supportive of our new S-differencing approach, especially for higher variance

ratios. Note that we have combined S-differencing with collapsing and curtailing (q = 1) in this

analysis, thus yielding a test with 1 degree of freedom. S-differencing on its own, without further
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(d) AR(1) alternative, η = 4

Figure 5: Theoretical power calculations for T = 10 against stationary alternatives

moment reductions, results in slightly lower power (not shown in Figure 5), although still favorable

compared to most competitors.

4 Estimator inconsistency under the alternative hypothesis

We now turn our attention to a setting where the coefficients β are estimated in a first step. While the

estimator β̂ is assumed to satisfy equation (2), it might be asymptotically biased under the alternative

hypothesis. This is typically the case in dynamic panel models. For instance, GMM estimators

(Arellano and Bond, 1991; Ahn and Schmidt, 1995; Arellano and Bover, 1995; Blundell and Bond,

1998) utilize internal instruments formed from lags of endogenous and predetermined regressors. These

instruments become invalid under serially correlated errors. As a consequence, serial-correlation tests

based on inconsistently estimated residuals can become inapplicable (Jung, 2005).

Recall that the noncentrality parameter is δ̃
′
R′(RṼR′)−1Rδ̃ under local alternatives E[ζi] =

δ/
√
N . Asymptotic bias of β̂ is reflected in E[ωi] = w(δ)/

√
N , which can have nontrivial power

implications. Equation (11) implies

√
NE[ζ̂i] = δ + Γ1w(δ) +

1

2
√
N

(
Ir ⊗ w(δ)′

)
Γ2w(δ) + o

(
1√
N

)
,
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such that limN→∞
√
NE[ζ̂i] = δ+Γ1w(δ) = δ̃. While the third term on the right side is asymptotically

negligible, it helps to improve the approximation of the finite-sample power profiles. Moreover, this

second-order effect on the noncentrality parameter can play a substantial role under fixed alternatives

rather than local alternatives, as in the Monte Carlo simulations of the next section.

Exemplarily, let us consider the simple stationary AR(1) panel data model, xit = yi,t−1, and the

Anderson and Hsiao (1981) just-identified IV estimator

β̂ =

∑N
i=1

∑T
t=2 yi,t−2∆yit∑N

i=1

∑T
t=2 yi,t−2∆yi,t−1

, (23)

with yi,t−2 as an instrument for the lagged dependent variable in the first-differenced regression model.

In Appendix E, we obtain analytical expressions for E[ζi], E[ωi], Γ1, and Γ2.

When the errors εit follow an MA(1) process, we find that Γ1E[ωi] = −E[ζi] and Γ2 = 0 if θ = −β.

The effect of the bias in the estimation of β on the noncentrality parameter exactly offsets the signal

from the violation of the moment restrictions. This is intuitive because the data-generating process

(DGP) in this case is observationally equivalent to

yit =
αi

1− β
+ νit,

where νit is serially uncorrelated. The estimator consistently estimates the pseudo-true value of the

lagged dependent variable’s coefficient β∗ = 0 under this static representation of the DGP. This result

holds for any T .

When T = 3, it turns out that Γ1E[ωi] = −E[ζi] also if β = 0. That is, a first-order expansion of ζ̂i

would suggest that the test cannot detect the serial correlation when yit follows a simple MA(1) process.

However, the asymptotically negligible second-order term indicates that the test remains informative

in finite samples or against fixed alternatives, because Γ2 is now nonzero. This is highlighted in

Figure 6, where we illustrate the power under a variance ratio η = 1 for two different sample sizes,

N ∈ {100, 10000}. Panels (a) and (d) demonstrate the almost flat power curves when the true DGP

is static instead of dynamic (β = 0). The minimal increase in power as θ → 1 is a result of the

second-order term in the expansion of E[ζ̂i], which does not improve with increasing sample size.

Importantly, under fixed alternatives – when the second-order term is not scaled down by N−1/2 –

these tests can show substantial power in this region. For β ̸= 0, we can clearly see the power loss

when θ → −β. This is much more pronounced for large N . for small sample sizes, the power can still

be virtually flat at the nominal size for a wide range of alternatives as a consequence of the estimation

error in β̂. It is also worth noting that there is hardly any gain from linearly combining the two
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(f) N = 10000, β = 0.9

Figure 6: Theoretical power calculations for an MA(1) alternative with T = 3 under estimator incon-
sistency

moments in this scenario.

When T ≥ 4, the “uninformative” elements of E[ζi] – such as E[ui1∆ui4] – lend power to the

test, even under first-order asymptotics. While they are zero both under the null and the alternative

hypothesis, the corresponding element of Γ1E[ωi] is nonzero due to the asymptotic bias of the estimator

β̂. This is particularly relevant when β = 0, in which case the “informative” moments provide virtually

no power. As a logical consequence, the better performing variants of the test are those which put a

large weight on the “uninformative” moments, while the picture is unchanged compared to T = 3 for

those which do not make use of them. This is demonstrated in Figure 7.

For β ̸= 0, the insights are similar to T = 3, although there is now more variation between the

different versions of the test. When β = 0.5, it is remarkable that the highest power is achieved by the

Arellano and Bond (1991) test, which had a tendency to perform worst when not accounting for the

estimator inconsistency. There is still no power against θ = −β due to the earlier equivalence result.

The results in this section are specific to the chosen DGP and estimator β̂. Including exogenous

regressors in the model can already break the above implications. We analyze such models by means

of Monte Carlo simulations in the next section. Nevertheless, the above results show that estimator

inconsistency under the alternative hypothesis can have serious adverse effects on the power of serial-

correlation tests.
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(f) N = 10000, β = 0.9

Figure 7: Theoretical power calculations for an MA(1) alternative with T = 4 under estimator incon-
sistency

5 Monte Carlo simulations

The asymptotic approximation of the test statistic’s distribution used for the theoretical power com-

parison can be quite inaccurate when N is relatively small. We therefore resort to Monte Carlo

simulations for a better understanding of the finite-sample properties of the various tests.

5.1 Static model

We first consider the following static DGP:

yit = βxit + αi + εit, (24)

where xit and αi are independently standard-normally distributed, and εit either follows an MA(1) or

AR(1) process as in equations (21) and (22), respectively. For both alternatives, we consider two sce-

narios. In the baseline case, the innovations νit are independently normally distributed with mean zero

and constant variance σ2ν , and the initial observations are drawn from the stationary distribution. In

the second case, we introduce time series heteroskedasticity of the form σ2ν,t = [tanh(2t/T )/ tanh(2)]σ2ν ,

which implies nonstationary initial observations εi0 = νi0 = 0 and an increasing variance over time.

To keep the variance ratio V ar(αi)/V ar(εit) constant at 1 in the homoskedastic case – and as t→ T in

the heteroskedastic case – while varying the degree of serial correlation, we set σ2ν = 1/(1 + θ2) under

the MA(1) alternative and σ2ν = (1 − ρ2) under the AR(1) alternative. This also ensures a constant

signal-to-noise ratio for the estimation of β. Across simulations, we hold N = 100 fixed while varying
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Figure 8: Simulated power against stationary alternatives

T ∈ [3, 15]. For each simulation, we perform 10,000 replications.

We set β = 1 and compute the same tests as in the previous sections, but this time using the

residuals ûit = yit − β̂xit, where β̂ is the conventional within-groups (“fixed-effects”) estimator. The

results are shown in Figures 8 and 9. It is apparent that the portmanteau test with all moment

restrictions reaches maximum power around T = 7 and then quickly loses power for higher T . It also

becomes undersized. Among the newly proposed tests, the S-differencing test tends to outperform all

other tests both in the stationary and the heteroskedastic case. Most of the tests are largely unaffected

by the heteroskedasticity. The only exception is the fully-collapsed test, which noticeably loses power.
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(f) AR(1) alternative, ρ = 0.2

Figure 9: Simulated power against nonstationary alternatives

The Arellano-Bond test, on the other side, performs slightly better under heteroskedasticity when T

is very small.

5.2 Dynamic model

To investigate the power implications of using an initial estimator that becomes inconsistent under

the alternative hypothesis, we consider a dynamic DGP:

yit = λyi,t−1 + βxit + ω(αi + εit). (25)
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(f) AR(1) alternative, λ = 0.5, ρ = 0.2

Figure 10: Simulated power with inconsistent initial estimator

xit, αi, and νit are distributed as in the static case. We set β = ω =
√
1− λ2 and draw the initial

observations yi0 from the stationary distribution, conditional on the realizations of αi:

yi0 = xi0 +

√
1 + λ

1− λ
αi + εi0.

We consider λ ∈ {0, 0.5} and restrict ourselves to the homoskedastic case. The residuals are

computed from three different method-of-moments estimators, exploiting some or all of the following
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(f) AR(1) alternative, λ = 0.5, ρ = 0.2

Figure 11: Simulated power with consistent initial estimator

moment conditions:

E

[
T∑
t=3

yi,t−2∆uit

]
= 0, (26)

E

[
T∑
t=3

xi,t−1∆uit

]
= 0, (27)

E

[
T∑
t=2

xit∆̄uit

]
= 0, (28)

where ∆̄uit = uit − (T − 1)−1
∑T

s=2 uis. The first estimator combines the Anderson and Hsiao (1981)
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(f) AR(1) alternative, λ = 0.5, ρ = 0.2

Figure 12: Simulated power with overidentified initial estimator

instrument for the first-differenced lagged dependent variable, implied by equation (26), with the fixed-

effects moment condition for the exogenous regressor, equation (28). Under the alternative hypothesis,

the first moment condition is violated and the estimator becomes inconsistent. Jung (2005) proposed

to solve this problem by replacing invalid instruments with lags of the exogenous variables. We thus

consider a second estimator that replaces moment condition (26) by (27), which remains consistent

due to the strict exogeneity of xit. As a third option, we look at a two-step GMM estimator utilizing

all three moments together. As there are 3 instruments – two of them always valid – for 2 coefficients,

we can then include the Hansen (1982) overidentification test in our comparison.
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An informative selection of the results is shown in Figures 10 and 11. Compared to the static model,

the power of the tests is notably lower. The widely used Arellano-Bond test suffers particularly when

the initial estimator is inconsistent under the alternative. The portmanteau test and the S-differencing

test tend to retain more power than the Arellano-Bond test, although they suffer from severe size

distortions when λ = 0.5. This is a consequence of the IV estimator being biased in finite samples.

When T becomes larger, the power of all tests vanishes under the MA(1) alternative with λ close to

−θ. When λ and θ have the same sign, we obtain the familiar picture with power loss only for the

portmanteau test.

Using a consistent – albeit inefficient – estimator vastly improves the picture. The tests regain

most of their power, although some size distortions remain. Importantly, when T becomes larger, the

power of all tests but the portmanteau test approaches 1. Those results clearly indicate that it is

beneficial for testing purposes to use residuals from an estimator that remains consistent under the

alternative of serially correlated errors.

In the overidentified case, when using all 3 instruments, the GMM estimator is still inconsistent

under the alternative, but the additional valid instrument mitigates the consequences. Expectedly,

the power of the tests lies in between the two just-identified cases, as demonstrated in Figure 12. The

Hansen (1982) overidentification test – depicted by long dashes and small dots – performs remarkably

well. Against large negative values of θ, it is even the most powerful of the considered tests, narrowly

beating the S-differencing test. However, it suffers under large positive values of ρ.

6 Empirical application

For an empirical illustration, we revisit the seminal paper by Arellano and Bond (1991) who estimate

dynamic employment equations with a panel of 140 U.K. companies over the time period 1976–1984.

The data set is unbalanced, although without interior gaps.13 The dependent variable nit is the

natural logarithm of employment. Predictors are the logarithms of the real product wage, wit, and

gross capital, kit. Additionally, the log of industry output, ysit, and a set of time dummies are included

to capture industry-level and aggregate shocks. We re-estimate the same dynamic specifications as in

columns (a1) and (a2) of their Table 4:14

nit = λ1ni,t−1 + λ2ni,t−2 + x′
itβ + γt + αi + εit, (29)

13Without gaps, there is no obvious advantage of transforming the moments into deviations from forward and backward
means, as in equation (10).

14For the specification in column (b) of Table 4 in Arellano and Bond (1991), we can obtain similar qualitative
conclusions. For the sake of brevity, we do not report those results here.
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where xit = (wit, wi,t−1, kit, ki,t−1, ki,t−2, ysit, ysi,t−1, ysi,t−2)
′ are assumed to be strictly exogenous

with respect to εit.

The coefficients are estimated with a GMM estimator for the model in first differences, which

removes the incidental parameters αi, utilizing the following moment conditions:

E[ni,t−s∆εit] = 0, 4 ≤ t ≤ T, 2 ≤ s ≤ t− 1, (30)

E

[
T∑
t=4

∆xit∆εit

]
= 0. (31)

The estimates are reported for a one-step estimator that would be efficient under homoskedastic and

serially uncorrelated idiosyncratic errors, column (a1), and a two-step estimator with a robust weight-

ing matrix clustered at the company level, column (a2). Standard errors are always made cluster-

robust. For the two-step estimator, we compute misspecification-robust doubly-corrected standard

errors (Hwang et al., 2022).

Our main focus is on testing the null hypothesis that the idiosyncratic error component εit is serially

uncorrelated. Importantly, if this assumption is violated, the GMM estimator becomes inconsistent

because ni,t−2 would be correlated with the first-differenced error term. Higher-order lags of the

dependent variable might remain valid instruments if the serial correlation in εit is confined to first

order.15 Besides their own serial-correlation test, Arellano and Bond (1991) consider the Sargan (1958)

or Hansen (1982) overidentification tests, which are expected to pick up a violation of the moment

conditions (30) as long as at least 2 of those moments remain valid under the alternative hypothesis.

This rules out arbitrary higher-order serial correlation, in which case all of the moment conditions

(30) would be violated;16 the remaining valid conditions (31) on their own are insufficient to identify

all coefficients.

Overidentification tests can indicate model misspecification in a variety of directions, not limited

to serial correlation. Moreover, given the relatively large number of overidentifying restrictions, if

only a few of them are violated, this might not create a strong enough signal to push the test statistic

beyond the threshold. For these reasons, Arellano and Bond (1991) also compute an incremental

overidentification test in the spirit of Eichenbaum et al. (1988), which can be obtained as the dif-

ference of the overidentification test statistics for the unrestricted model and a restricted model, in

which the suspicious instruments ni,t−2 (for all t) are left out. A rejection of this test then provides

specific statistical evidence against the validity of this particular group of instruments. Here, we re-

15Blundell and Bond (2000) present a framework in which autoregressive productivity shocks and measurement error
in a Cobb-Douglas production function imply a dynamic model representation with MA(1) idiosyncratic errors.

16Note that autoregressive alternatives imply higher-order serial correlation by construction.
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port a modified version of this test, in which the respective partition of the weighting matrix from

the unrestricted model – leaving out the columns and rows associated with the instruments under

investigation – is used to compute the test statistic for the restricted model. This has the benefit of

guaranteeing that the difference of the test statistics is nonnegative in finite samples (Newey, 1985).

Furthermore, Arellano and Bond (1991) compute a Hausman (1978) test contrasting the esti-

mates of λ1 obtained from the unrestricted and the restricted estimator. Under first-order (but not

higher-order) serial error correlation, the restricted estimator remains consistent, while the unrestricted

estimator is more efficient under the null hypothesis. Here, we compute a generalized version of this

test with a robust estimator of the covariance matrix that does not require one of the estimators to

be fully efficient (White, 1982). We also add a Hausman-type test contrasting jointly the estimates of

λ1 and λ2. One could also include the coefficients β in this contrast, but we might expect them to be

less affected and thus to provide a less powerful signal for the test.

From the serial-correlation tests discussed in this paper, we include the Jochmans (2020b) port-

manteau test, the test entirely in first differences, and our S-differencing test. For each of them, we

consider a collapsed version and a version combining collapsing with curtailing (q = 1). For the first-

differenced test, these versions resemble the Yamagata (2008) and Arellano and Bond (1991) tests,

respectively.

We present the results in Table 2. In addition to the “efficient” estimates using all instruments,

we present the “consistent” estimates (under first-order serial correlation) obtained by leaving out the

instruments ni,t−2. The latter form the basis for the comparison with the incremental overidentification

test and the Hausman tests. Moreover, as argued earlier, serial-correlation tests might have low power

when based on the efficient but possibly inconsistent estimator.

First of all, we are able to replicate the coefficient estimates reported by Arellano and Bond (1991)

– with few negligible deviations at the third decimal place that can be easily explained by different

levels of computational precision. The standard errors for the one-step estimator coincide as well.

Notably, the doubly-corrected standard errors for the two-step estimator are substantially larger than

the uncorrected ones reported by Arellano and Bond (1991). Most of this discrepancy can be explained

by the finite-sample bias in the computation of the variance due to neglecting the additional variation

from the initial estimates (Windmeijer, 2005).

The Sargan (1958) overidentification test strongly rejects the null hypothesis of correct model

specification for the efficient one-step estimator. When applied to the consistent estimator under

the alternative hypothesis of at most first-order serial correlation, the test no longer rejects. As a

consequence of the significant difference in these two tests, the incremental overidentification test also
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Table 2: Estimation of employment equations

nit (a1) efficient (a1) consistent (a2) efficient (a2) consistent

ni,t−1 0.686 (0.145) 0.986 (0.191) 0.629 (0.331) 0.878 (0.265)
ni,t−2 -0.085 (0.056) 0.238 (0.181) -0.065 (0.048) 0.381 (0.167)
wit -0.608 (0.178) -0.683 (0.220) -0.526 (0.166) -0.639 (0.224)
wi,t−1 0.393 (0.168) 0.524 (0.258) 0.311 (0.257) 0.389 (0.240)
kit 0.357 (0.059) 0.317 (0.066) 0.278 (0.064) 0.254 (0.057)
ki,t−1 -0.058 (0.073) -0.174 (0.096) 0.014 (0.109) -0.093 (0.102)
ki,t−2 -0.020 (0.033) -0.181 (0.065) -0.040 (0.066) -0.217 (0.065)
ysit 0.609 (0.173) 0.658 (0.202) 0.592 (0.160) 0.605 (0.200)
ysi,t−1 -0.711 (0.232) -0.878 (0.354) -0.566 (0.313) -0.713 (0.342)
ysi,t−2 0.106 (0.141) 0.060 (0.205) 0.101 (0.158) 0.026 (0.216)

Sargan/Hansen χ2
25 = 67.6 [0.000] χ2

19 = 24.6 [0.175] χ2
25 = 31.4 [0.177] χ2

19 = 16.0 [0.655]
incremental χ2

6 = 33.5 [0.000] χ2
6 = 13.9 [0.031]

Hausman ni,t−1 χ2
1 = 2.83 [0.093] χ2

1 = 1.56 [0.209]
+ ni,t−2 χ2

2 = 8.36 [0.015] χ2
2 = 9.88 [0.007]

portmanteau χ2
20 = 16.3 [0.701] χ2

20 = 21.6 [0.362] χ2
20 = 21.3 [0.380] χ2

20 = 27.0 [0.135]
+ collapsing χ2

6 = 1.98 [0.921] χ2
6 = 4.29 [0.637] χ2

6 = 3.38 [0.760] χ2
6 = 5.21 [0.518]

+ curtailing χ2
2 = 1.61 [0.447] χ2

2 = 2.52 [0.284] χ2
2 = 2.71 [0.259] χ2

2 = 3.92 [0.141]

first differencing χ2
10 = 5.21 [0.877] χ2

10 = 18.5 [0.047] χ2
10 = 12.8 [0.237] χ2

10 = 17.7 [0.061]
+ collapsing χ2

4 = 0.73 [0.948] χ2
4 = 16.4 [0.002] χ2

4 = 0.58 [0.966] χ2
4 = 16.5 [0.002]

+ curtailing χ2
1 = 0.20 [0.652] χ2

1 = 9.85 [0.002] χ2
1 = 0.18 [0.669] χ2

1 = 11.3 [0.001]

S-differencing χ2
10 = 24.9 [0.006] χ2

10 = 30.6 [0.001] χ2
10 = 28.6 [0.001] χ2

10 = 37.8 [0.000]
+ collapsing χ2

4 = 17.3 [0.002] χ2
4 = 19.9 [0.001] χ2

4 = 18.8 [0.001] χ2
4 = 26.8 [0.000]

+ curtailing χ2
1 = 8.16 [0.004] χ2

1 = 10.9 [0.001] χ2
1 = 10.2 [0.001] χ2

1 = 11.5 [0.001]
(i) The regression specifications correspond to those with the same column titles, (a1) and (a2), in Table
4 of Arellano and Bond (1991). All regressions include time dummies.
(ii) The coefficients are estimated by a GMM estimator for the first-differenced regression model. Col-
umn (a1) are one-step estimates, while columns (a2) and (b) are two-step estimates. The one-step
weighting matrix is optimal under homoskedastic and serially uncorrelated idiosyncratic errors.
(iii) The instruments for the efficient estimator under the null hypothesis are specified in note (vi) of
Table 4 in Arellano and Bond (1991). For the consistent estimator under the alternative hypothesis of
first-order serially correlated errors, the instruments ni,t−2 (for all t) are left out.
(iii) Standard errors in parentheses are cluster-robust at the company level, computed with the doubly-
corrected variance formula of Hwang et al. (2022) in columns (a2) and (b).
(iv) The first set of reported specification tests are the Sargan (1958) and Hansen (1982) overidenti-
fication test, an incremental overidentification test proposed by Eichenbaum et al. (1988), and two
generalized Hausman (1978) tests for the coefficients of ni,t−1 only and (ni,t−1, ni,t−2) jointly. p-values
are in brackets.
(v) The second set of specification tests are the portmanteau test of Jochmans (2020b), a collapsed
version of it, and a collapsed and curtailed (q = 1) version.
(vi) The third set of specification tests are tests based entirely on first differences. The collapsed version
is the Yamagata (2008) test, and the collapsed and curtailed (q = 1) version is the χ2 analogue of the
Arellano and Bond (1991) test.
(vii) The final set of tests are our S-differencing test, a collapsed version of it, and a collapsed and
curtailed (q = 1) version.

suggests rejection of the null hypothesis. In contrast, the Hausman test provides a less clear indication

with a p-value of 0.09 when contrasting only the first coefficient. When both coefficients of the lagged

dependent variables are included in the comparison, the signal becomes stronger.

When heteroskedasticity causes the one-step estimator to be inefficient, the respective overidenti-

fication tests become asymptotically invalid. With the two-step estimator, which regains asymptotic

efficiency, the Hansen (1982) overidentification test no longer rejects the null hypothesis even with the

efficient set of instruments. The same applies to the Hausman test for the first coefficient. The incre-

mental overidentification test and the extended Hausman test still tend to reject the null, providing a
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mixed overall picture.

The portmanteau test, including its collapsed and curtailed versions, never rejects the null hy-

pothesis in this example. The first-differencing tests also do not reject when they are based on the

efficient estimators. However, they tend to reject once the residuals are taken from the respective

estimator that remains consistent under first-order serially correlated errors. This would be in line

with the earlier discussion that these tests tend to suffer from severe power losses when the estimator

is inconsistent under the alternative, and it highlights the potential benefits from basing the test on

an estimator that remains consistent under the alternative. For the portmanteau test, we also see a

reduction in p-values under the consistent estimation, but it is not strong enough to trigger a rejec-

tion at conventional significance levels. With a maximum of 20 degrees of freedom, this is less likely

a consequence of moment proliferation – although the portmanteau test is expected to already lose

some power in a data set with T = 7 and N = 140 – but could be explained by the test’s power dete-

rioration under high variances of the company-specific error component, which would be reasonable in

an application like this. Indeed, based on the consistent one-step or two-step residuals we can obtain

estimates of the error components’ variance ratio of η̂ = 6.82 or η̂ = 7.88, respectively.

Lastly, our S-differencing test strongly rejects the null hypothesis throughout all specifications,

with and without collapsing or curtailing. The results across the different serial-correlation tests are

consistent with our earlier power analysis, especially if the errors εit follow an autoregressive process

with large positive autocorrelation, in addition to high variances of αi. Notably, in this case the

estimators labeled “consistent” in Table 2 would actually still be inconsistent.

7 Conclusions

Recently, Jochmans (2020b) proposed a portmanteau test against arbitrary serial correlation in the

idiosyncratic error components of linear panel models. Compared to earlier tests, especially the

popular Arellano and Bond (1991) test, it convinces with substantial power gains when T is (very)

small. However, due to the rapid moment proliferation, this test can quickly lose its power advantage

already for moderately small T , or even become degenerate. To restrain the number of moment

restrictions, we borrow strategies that are widely used to address a similar problem of instrument

proliferation in dynamic panel models: curtailing and collapsing.

Another shortcoming of the portmanteau test is its lack of invariance to high variances of the

group-specific error component. While tests for serial correlation in the first-differenced errors avoid

this issue, they have no power against a random-walk alternative. We propose a new test based

on S-differencing – long differences encompassing first differences – that remains invariant to high
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variances of the group-specific error component and does not suffer from a power loss under highly

autocorrelated alternatives. We demonstrate with power calculations and Monte Carlo simulations

that the power gains from our new test can be substantial. In a real-world example, we reach different

conclusions from applying the S-differencing test compared to existing tests.

Furthermore, we uncover a potentially serious deterioration in all of the tests’ power when the

residuals are computed from an estimator that is inconsistent under the alternative hypothesis. In

extreme cases, the impact of the estimator’s asymptotic bias on the tests’ noncentrality parameter

can fully offset the signal from a violation of the moment restrictions, leading to a complete loss of

power. To circumvent this problem, we suggest for testing purposes to use an estimator that remains

consistent – albeit possibly inefficient – under reasonable alternatives.
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Appendix A Orthogonal deviations

In Section 2.2, we noted that we can replace Ḧ′
i+∆üi by alternative moment functions Ȟ′

i+∆üi that

can be obtained as linear combinations of the initial moment functions. This follows from the fact

that the set of initial moment functions ζi is exhaustive. In particular, we can choose Ȟ′
i+ = Ḧ′

i+K+,

provided that K+ is lower triangular and of full rank. Then, analogously to equation (9), we can form

alternative linear combinations with these transformed moment functions. In particular,

uiTK+∆üi = R±(K+)Ḣ
′
i−∆u̇i + Ḧ′

i+K+∆üi, (32)

with an appropriate choice of R±(K+). When K+ = IT−2, we obtain as a special case

uiT∆üi = R±(I)Ḣ
′
i−∆u̇i + Ḧ′

i+∆üi.

After premultiplication with K+,

uiTK+∆üi = K+R±(I)Ḣ
′
i−∆u̇i +K+Ḧ

′
i+∆üi. (33)

Combining equations (32) and (33) then yields

(
Ḧ′

i+K+ −K+Ḧ
′
i+

)
∆üi =

(
K+R±(I) −R±(K+)

)
Ḣ′

i−∆u̇i,
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and therefore applying the transformationK+ to Ḧ′
i+∆üi yields an equivalent test statistic as applying

the same transformation directly to ∆üi.

Appendix B Proof of Proposition 1

Define Z = (ζ1, ζ2, . . . , ζN )′, S = ZR′ (RZ′ZR′)−RZ′, and let ιN be an N × 1 vector of ones, such

that sR,N = ι′NSιN . Consider the singular value decomposition ZR′ = U1DU′
2, where U1 is the

N × N orthogonal eigenvector matrix of S, and U2 is the r × r orthogonal eigenvector matrix of

RZ′ZR′. Given r ≥ N , D is an N × r rectangular diagonal matrix with singular values d1, d2, . . . , dN

of ZR′ on the diagonal. All singular values are nonzero (with probability 1) due to the maximum-rank

assumption rk(RZ′ZR′) = rk(ZR′) = N .

With U′
2U2 = Ir, we can write the test statistic as

sR,N = ι′NU1DU′
2

(
U2D

′DU′
2

)−
U2D

′U′
1ιN = ι′NU1D(D′D)−D′U′

1ιN .

When r ≥ N , D′D = diag(d21, d
2
2, . . . , d

2
N , 0, . . . , 0), with r −N eigenvalues of RZ′ZR′ equal to zero.

Consequently, the diagonal matrix of eigenvalues of the idempotent matrix S is D(D′D)−D′ = IN .

Thus, with U1U
′
1 = IN ,

sR,N = ι′NU1U
′
1ιN = ι′NιN = N.

Appendix C Transformation matrices

Curtailing refers to a selection of the moment restrictions with transformation matrix

Rq =

Rq− 0

0 IT−2


such that Hi−R

′
q− only retains the columns of Hi− corresponding to the moment restrictions (5) for

2 ≤ s ≤ max(q + 1, t− 1). For example, if q = 1 then

Hi−R
′
1− =



0 0 · · · 0

ui1 0 · · · 0

0 ui2 0

...
. . .

0 0 ui,T−2


.
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Collapsing instead corresponds to a transformation matrix

Rc =

Rc− 0

0 ι′T−2

 ,

where ιT−2 is a column vector with all T − 2 elements equal to 1, such that

Hi−R
′
c− =



0 0 · · · 0

ui1 0 · · · 0

ui2 ui1 0

...
...

. . .

ui,T−2 ui,T−3 · · · ui1


and Hi+ιT−2 =



ui3

ui4
...

uiT

0


.

For the full-collapsing approach, the respective transformation matrix is

Rfc =

(
−ι′(T−1)(T−2)/2 ι′T−2

)
,

such that

HiR
′
fc =



ui3

ui4 − ui1

ui5 − (ui1 + ui2)

...

uiT − (ui1 + . . .+ ui,T−3)

−(ui1 + . . .+ ui,T−2)


.

The transformation matrix R∆ = (R∆−,0) linearly combines the columns of Hi to obtain first

differences:

HiR
′
∆ = Hi−R

′
∆− =



0 0 0 · · · 0 · · · 0

0 0 0 · · · 0 · · · 0

∆ui2 0 0 · · · 0 · · · 0

0 ∆ui2 ∆ui3 0 · · · 0

...
. . .

0 0 0 ∆ui2 · · · ∆ui,T−2


.
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Combined with the collapsing approach, the transformation for the Yamagata (2008) test is

HiR
′
∆c = Hi−R

′
∆c− =



0 0 · · · 0

0 0 · · · 0

∆ui2 0 · · · 0

∆ui3 ∆ui2 0

...
...

. . .

∆ui,T−2 ∆ui,T−3 · · · ∆ui2


.

By selecting one of the columns of Hi−R
′
∆c−, we can replicate the Arellano and Bond (1991) test. For

example, their test against second-order serial correlation in the first-differenced errors combines first

differencing, collapsing, and curtailing (q = 1) of the original moment restrictions:

HiR
′
∆c1 = Hi−R

′
∆c1− =



0

0

∆ui2
...

∆ui,T−2


.

To obtain the S-differencing moment restriction, combined with curtailing (q = 1) and collapsing,

the transformation matrix becomes R∆1,2c1 =
(
−(ι′T−3, 0)R1−, (0, ι

′
T−3)

)
, such that

HiR
′
∆1,2c1 =



0

∆1,2ui3

∆1,2ui4
...

∆1,2ui,T−1

0


=



0

ui4 − ui1

ui5 − ui2
...

uiT − ui,T−3

0


.
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Appendix D Variance-covariance matrix under stationarity

For general T and a stationary data-generating process, under the null hypothesis we can obtain

V = σ2ν



A1 B′
2 0 · · · · · · 0 C′

1

B2 A2 B′
3

. . . 0 C′
2

0 B3 A3
. . .

. . .
...

...

...
. . .

. . .
. . . B′

T−3 0 C′
T−3

...
. . . BT−3 AT−3 B′

T−2 C′
T−3

0 0 · · · 0 BT−2 AT−2 C′
T−2

C1 C2 · · · CT−4 CT−3 CT−2 D



,

where Aj , j = 1, 2, . . . , T − 2, is a sequence of j × j matrices with main-diagonal elements 2(σ2α + σ2ν)

and off-diagonal elements 2σ2α; Bj , j = 2, 3, . . . , T − 2, is a sequence of j× (j− 1) matrices with main-

diagonal elements −(σ2α + σ2ν) and off-diagonal elements −σ2α; Cj , j = 1, 2, . . . , T − 2, is a sequence

of (T − 2) × j matrices with all elements in the first j − 2 rows and the j − 2 leading elements in

the (j − 1)-st row (for j > 2) equal to zero, the last two elements in the (j − 1)-st row (for j > 1)

equal to σ2v and −σ2v , all elements but the last one in the j-th row equal to −σ2α and the last one

equal to −(σ2α + σ2v), all elements in the (j + 1)-th row (for j < T − 2) equal to 2σ2α, all elements in

the (j + 2)-nd row (for j < T − 3) equal to −σ2α, and all remaining rows (if any) full of zeros; and D

is a (T − 2)× (T − 2) matrix with main-diagonal elements 2(σ2α + σ2ν), all elements on the diagonals

directly above and below the main diagonal equal to −σ2α, and all other elements equal to zero. For

T = 4, this becomes

V = σ2ν



2(σ2α + σ2ν) −(σ2α + σ2ν) −σ2α −(σ2α + σ2ν) 2σ2α

−(σ2α + σ2ν) 2(σ2α + σ2ν) 2σ2α σ2ν −σ2α

−σ2α 2σ2α 2(σ2α + σ2ν) −σ2ν −(σ2α + σ2ν)

−(σ2α + σ2ν) σ2ν −σ2ν 2(σ2α + σ2ν) −σ2α

2σ2α −σ2α −(σ2α + σ2ν) −σ2α 2(σ2α + σ2ν)


.

Appendix E Anderson-Hsiao IV estimation of dynamic model

For the simply dynamic panel data model

yit = βyi,t−1 + uit, uit = αi + εit,
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with stationary representation yit =
∑∞

j=0 β
jui,t−j for |β| < 1, the Anderson and Hsiao (1981) IV

estimator (23) is inconsistent under the alternative hypothesis of serially correlated errors εit:

plim
N→∞

(
β̂ − β

)
=

plimN→∞
1
N

∑N
i=1

∑T
t=2 yi,t−2∆εit

plimN→∞
1
N

∑N
i=1

∑T
t=2 yi,t−2∆yi,t−1

.

E.1 MA(1) alternative

Under the stationary MA(1) alternative (21), we have

E[εitεi,t−j ] =


(1 + θ2)σ2ν , j = 0

θσ2ν , |j| = 1

0, |j| > 1

.

We then obtain for the numerator

plim
N→∞

1

N

N∑
i=1

T∑
t=2

yi,t−2∆εit = −
T∑
t=2

E[εi,t−2εi,t−1] = −(T − 1)θσ2ν ,

and for the denominator

plim
N→∞

1

N

N∑
i=1

T∑
t=2

yi,t−2∆yi,t−1 =
T∑
t=2

∞∑
j=0

∞∑
l=0

βj+lE[εi,t−2−j∆εi,t−1−l] = −(T − 1)
(1 + β)θ + (1− θ)2

1 + β
σ2ν .

Thus,

E[ωi] = plim
N→∞

(
β̂ − β

)
=

(1 + β)θ

(1 + β)θ + (1− θ)2
.

When T = 3, E[ζi] = θσ2ν(−1, 1)′, and

Γ1 = −E


yi0∆ui3 + ui1∆yi2

yi2∆ui2 + ui3∆yi1


 = −

2∑
j=0

βjE


εi1∆εi,2−j

εi,2−j∆εi2




=
(
(β2 − β + 1)θ − (1− β)(1 + θ2)

)
σ2ν

−1

1

 ,

Γ2 = 2E


yi0∆yi2
yi2∆yi1


 = 2

(
β
(1 + β)θ + (1− θ)2

1 + β
+ θ

)
σ2ν

−1

1

 .
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Consequently,

E[ζi] + Γ1E[ωi] =
βθ(β + θ)(1 + βθ)

(1 + β)θ + (1− θ)2
σ2ν

−1

1

 ,

1

2
Γ2(E[ωi])

2 =
(1 + β)θ2(β + θ)(1 + βθ)

((1 + β)θ + (1− θ)2)2
σ2ν

−1

1

 .

Under local alternatives of the form θ = θ∗/
√
N , we have E[ζi] + Γ1E[ωi] = o(1) and Γ2(E[ωi])

2 =

o(N−1/2). This reflects the asymptotic negligibility of the second-order term. However, it still lends

some power to the test in finite samples or against fixed alternatives. This can be particularly relevant

when β = 0, in which case the first term evaluates to zero while the second term remains informative.

When θ = −β (or, trivially, θ = 0), both terms equate to zero. This is intuitive because the DGP

under θ = −β is observationally equivalent to a DGP with β = θ = 0.

When T = 4, E[ζi] = θσ2ν(−1, 0,−1, 1, 1)′, and

Γ1 = −E





yi0∆ui3 + ui1∆yi2

yi0∆ui4 + ui1∆yi3

yi1∆ui4 + ui2∆yi3

yi2∆ui2 + ui3∆yi1

yi3∆ui3 + ui4∆yi2




= −

2∑
j=0

βjE





εi1∆εi,2−j

βεi1∆εi,2−j

εi2∆εi,3−j

εi,2−j∆εi2

εi,3−j∆εi3




− E





0

εi1∆εi3

0

0

0





=
(
(β2 − β + 1)θ − (1− β)(1 + θ2)

)
σ2ν



−1

−β

−1

1

1


+ θσ2ν



0

1

0

0

0


,

Γ2 = 2E





yi0∆yi2

yi0∆yi3

yi1∆yi3

yi2∆yi1

yi3∆yi2




= 2

(
β
(1 + β)θ + (1− θ)2

1 + β
+ θ

)
σ2ν



−1

−β

−1

1

1


,
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such that

E[ζi] + Γ1E[ωi] =
βθ(β + θ)(1 + βθ)

(1 + β)θ + (1− θ)2
σ2ν



−1

−β

−1

1

1


+

θ(β + θ)(1 + βθ)

(1 + β)θ + (1− θ)2
σ2ν



0

1

0

0

0


,

1

2
Γ2(E[ωi])

2 =
(1 + β)θ2(β + θ)(1 + βθ)

((1 + β)θ + (1− θ)2)2
σ2ν



−1

−β

−1

1

1


.

For all but the second moment restriction, the expressions are identical to the one for T = 3. Note-

worthy, the additional term for the second moment restriction, which is asymptotically nonnegligible

under local alternatives, remains nonzero when β = 0.

It should also be noted that Γ1 ̸= 0 when θ = 0. Consequently, the estimation error must be

accounted for in the estimation of the variance matrix Ṽ even under the null hypothesis.

E.2 AR(1) alternative

Under the stationary AR(1) alternative (22), we have E[εitεi,t−j ] = ρ|j|(1− ρ2)−1σ2ν . It follows for the

numerator of the Anderson and Hsiao (1981) estimator that

plim
N→∞

1

N

N∑
i=1

T∑
t=2

yi,t−2∆εit =
T∑
t=2

∞∑
j=0

βjE[εi,t−2−j∆εit] = − (T − 1)ρ

(1− βρ)(1 + ρ)
σ2ν .

For the denominator, we obtain

plim
N→∞

1

N

N∑
i=1

T∑
t=2

yi,t−2∆yi,t−1 =
T∑
t=2

∞∑
j=0

∞∑
l=0

βj+lE[εi,t−2−j∆εi,t−1−l] = − (T − 1)

(1 + β)(1− βρ)(1 + ρ)
σ2ν .

Thus,

E[ωi] = plim
N→∞

(
β̂ − β

)
= (1 + β)ρ.
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When T = 3, E[ζi] = ρ(1 + ρ)−1σ2ν(−1, 1)′, and

Γ1 = −E


yi0∆ui3 + ui1∆yi2

yi2∆ui2 + ui3∆yi1


 = −

∞∑
j=0

βjE


εi,0−j∆εi3 + εi1∆εi,2−j

εi,2−j∆εi2 + εi3∆εi,1−j




=
β(1 + ρ)− (1 + ρ2)

(1− βρ)(1 + ρ)
σ2ν

−1

1

 ,

Γ2 = 2E


yi0∆yi2
yi2∆yi1


 = 2

β + ρ+ βρ

(1 + β)(1− βρ)(1 + ρ)
σ2ν

−1

1

 .

It follows that

E[ζi] + Γ1E[ωi] =
ρ(β − ρ)(β + ρ+ βρ)

(1− βρ)(1 + ρ)
σ2ν

−1

1

 ,

1

2
Γ2(E[ωi])

2 =
(1 + β)ρ2(β + ρ+ βρ)

(1− βρ)(1 + ρ)
σ2ν

−1

1


Under local alternatives of the form ρ = ρ∗/

√
N , we have again E[ζi]+Γ1E[ωi] = o(1) and Γ2(E[ωi])

2 =

o(N−1/2), provided that β ̸= 0. Notably, both terms equate to zero when ρ = −β/(1 + β), imply-

ing a complete loss of power against this alternative. Under first-order asymptotics, there is also no

power against ρ = β. Importantly, when β = 0, both terms cancel each other out, which again is

intuitive because a DGP with β = 0 is observationally equivalent to a DGP with ρ = 0 due to the

exchangeability of β and ρ.

When T = 4, E[ζi] = ρ(1 + ρ)−1σ2ν(−1,−ρ,−1, 1, 1)′, and

Γ1 = −E





yi0∆ui3 + ui1∆yi2

yi0∆ui4 + ui1∆yi3

yi1∆ui4 + ui2∆yi3

yi2∆ui2 + ui3∆yi1

yi3∆ui3 + ui4∆yi2




= −

∞∑
j=0

βjE





εi,0−j∆εi3 + εi1∆εi,2−j

εi,0−j∆εi4 + εi1∆εi,3−j

εi,1−j∆εi4 + εi2∆εi,3−j

εi,2−j∆εi2 + εi3∆εi,1−j

εi,3−j∆εi3 + εi4∆εi,2−j





=
β(1 + ρ)− 1

(1− βρ)(1 + ρ)
σ2ν



−1

−β

−1

1

1


− ρ2

(1− βρ)(1 + ρ)
σ2ν



−1

−ρ

−1

1

1


+

ρ

1 + ρ
σ2ν



0

1

0

0

0


,
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Γ2 = 2E





yi0∆yi2

yi0∆yi3

yi1∆yi3

yi2∆yi1

yi3∆yi2




= 2

β + ρ+ βρ

(1 + β)(1− βρ)(1 + ρ)
σ2ν



−1

−β

−1

1

1


− 2

ρ2

(1− βρ)(1 + ρ)
σ2ν



0

1

0

0

0


,

and thus

E[ζi] + Γ1E[ωi] =
ρ(β − ρ)(β + ρ+ βρ)

(1− βρ)(1 + ρ)
σ2ν



−1

0

−1

1

1


+

(
(1 + β)

(
ρ3 − β(β + βρ− 1)

)
(1− βρ)(1 + ρ)

+
βρ

1 + ρ

)
σ2ν



0

ρ

0

0

0


,

1

2
Γ2(E[ωi])

2 =
(1 + β)ρ2(β + ρ+ βρ)

(1− βρ)(1 + ρ)
σ2ν



−1

−β

−1

1

1


− (1 + β)2ρ4

(1− βρ)(1 + ρ)
σ2ν



0

1

0

0

0


.

The additional terms for the second moment restriction cancel each other out under fixed alternatives

when β = 0. Otherwise, they still contribute some power when the other moment restrictions evaluate

to zero under the previously identified conditions. We illustrate the power profiles against AR(1)

alternatives in Figures 13 and 14.
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(f) N = 10000, β = 0.9

Figure 13: Theoretical power calculations for an AR(1) alternative with T = 3 under estimator
inconsistency
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(f) N = 10000, β = 0.9

Figure 14: Theoretical power calculations for an AR(1) alternative with T = 4 under estimator
inconsistency
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